
should look into the improvement of heuristics and
possibility of making better 3D data.
In addition, the scope of pollen classification
could be expanded to include a wider variety of pollen
families beyond Urticaceae. Investigating the appli-
cation of 3D CNNs to other pollen types could val-
idate the generalizability and robustness of the pro-
posed methodology. This expansion would involve
collecting and annotating new datasets from differ-
ent plant families, which may present unique chal-
lenges in terms of morphological diversity and data
complexity. Additionally, understanding the specific
allergenic properties of various pollen families would
further enhance the practical applications of these
models in environmental health and allergen forecast-
ing. Instead of widefield microscopy, confocal laser
scanning micrsocpy (CLSM) is a good option provid-
ing baseline on pollen morphology and nuclei stained
with DAPI.
REFERENCES
Astolfi, G., Gonc¸alves, A. B., Menezes, G. V., Borges, F.
S. B., Astolfi, A. C. M. N., Matsubara, E. T., Alvarez,
M., and Pistori, H. (2020). POLLEN73S: An image
dataset for pollen grains classification. Ecological in-
formatics, 60:101165.
Barnes, C. M., Power, A. L., Barber, D. G., Tennant,
R. K., Jones, R. T., Lee, G. R., Hatton, J., Elliott,
A., Zaragoza-Castells, J., Haley, S. M., Summers,
H. D., Doan, M., Carpenter, A. E., Rees, P., and Love,
J. (2023). Deductive automated pollen classification
in environmental samples via exploratory deep learn-
ing and imaging flow cytometry. New Phytologist,
240(3):1305–1326.
Carreira, J. and Zisserman, A. (2017). Quo Vadis, Action
Recognition? A New Model and the Kinetics Dataset.
arXiv (Cornell University).
Chollet, F. (2016). Xception: Deep learning with depthwise
separable convolutions.
Daood, A., Ribeiro, E., and Bush, M. (2016). Pollen grain
recognition using deep learning. In Bebis, G., Boyle,
R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., En-
tezari, A., Min, J., Iwai, D., Sadagic, A., Scheidegger,
C., and Isenberg, T., editors, Advances in Visual Com-
puting, pages 321–330, Cham. Springer International
Publishing.
Duan, K., Bao, S., Liu, Z., and Cui, S. (2022). Exploring
vision transformer: classifying electron-microscopy
pollen images with transformer. Neural Computing
and Applications, 35(1):735–748.
D’Amato, G., Chong-Neto, H., Monge Ortega, O., Vitale,
C., Ansotegui, I., Rosario, N., Haahtela, T., Galan,
C., Pawankar, R., Murrieta-Aguttes, M., Cecchi, L.,
Bergmann, C., Ridolo, E., Ramon, G., Gonzalez Diaz,
S., D’Amato, M., and Annesi-Maesano, I. (2020). The
effects of climate change on respiratory allergy and
asthma induced by pollen and mold allergens. Allergy,
75:2219–2228.
Feichtenhofer, C., Fan, H., Malik, J., and He, K. (2018).
Slowfast networks for video recognition.
Gallardo, R., Garc
´
ıa-Orellana, C. J., Gonz
´
alez-Velasco,
H. M., Garc
´
ıa-Manso, A., Tormo-Molina, R., Mac
´
ıas-
Mac
´
ıas, M., and Abeng
´
ozar, E. (2024). Automated
multifocus pollen detection using deep learning. Mul-
timedia tools and applications.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition.
Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2019).
Squeeze-and-excitation networks.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2016). Densely connected convolutional net-
works.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Suk-
thankar, R., and Fei-Fei, L. (2014). Large-scale video
classification with convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR).
K
¨
op
¨
ukl
¨
u, O., Kose, N., Gunduz, A., and Rigoll, G. (2019).
Resource efficient 3d convolutional neural networks.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90.
Li, C., Polling, M., Cao, L., Gravendeel, B., and Verbeek,
F. (2023). Analysis of automatic image classification
methods for urticaceae pollen classification. Neuro-
computing, 522:181–193.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,
and Guo, B. (2021). Swin transformer: Hierarchical
vision transformer using shifted windows.
Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. (2022). A convnet for the 2020s.
Polling, M., Li, C., Cao, L., Verbeek, F., de Weger, L., Bel-
monte, J., De Linares, C., Willemse, J., de Boer, H.,
and Gravendeel, B. (2021). Neural networks for in-
creased accuracy of allergenic pollen monitoring. Sci-
entific Reports, 11:11357.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks.
Rostami, M. A., Balmaki, B., Dyer, L. A., Allen, J. M.,
Sallam, M. F., and Frontalini, F. (2023). Efficient
pollen grain classification using pre-trained Convolu-
tional Neural Networks: a comprehensive study. Jour-
nal of big data, 10(1).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks.
Simonyan, K. and Zisserman, A. (2014). Very deep convo-
lutional networks for large-scale image recognition.
Smith, L. N. and Topin, N. (2017). Super-convergence:
Very fast training of neural networks using large learn-
ing rates. arXiv preprint arXiv:1708.07120. Preprint.
Work in progress.
BIOIMAGING 2025 - 12th International Conference on Bioimaging
294