
Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data
clustering: a review. ACM computing surveys (CSUR),
31(3):264–323.
Ji, Z., Liu, J., Cao, G., Sun, Q., and Chen, Q. (2014). Ro-
bust spatially constrained fuzzy c-means algorithm for
brain mr image segmentation. Pattern recognition,
47(7):2454–2466.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages
1942–1948. ieee.
Korani, W. and Mouhoub, M. (2020a). Breast cancer di-
agnostic tool using deep feedforward neural network
and mother tree optimization. In International Confer-
ence on Optimization and Learning, pages 229–240.
Springer.
Korani, W. and Mouhoub, M. (2020b). Discrete mother
tree optimization for the traveling salesman prob-
lem. In Neural Information Processing: 27th Inter-
national Conference, ICONIP 2020, Bangkok, Thai-
land, November 23–27, 2020, Proceedings, Part II 27,
pages 25–37. Springer.
Korani, W. and Mouhoub, M. (2021). Review on nature-
inspired algorithms. In Operations research forum,
volume 2, page 36. Springer.
Korani, W. and Mouhoub, M. (2022a). Discrete mother tree
optimization and swarm intelligence for constraint
satisfaction problems. In International Conference
on Agents and Artificial Intelligence (ICAART 2022),
pages 234–241. INSTICC.
Korani, W. and Mouhoub, M. (2022b). Mother tree op-
timization for conditional constraints and qualitative
preferences. In 2022 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pages 1610–1617.
Korani, W., Mouhoub, M., and Spiteri, R. J. (2019). Mother
tree optimization. In 2019 IEEE International Confer-
ence on Systems, Man and Cybernetics (SMC), pages
2206–2213. IEEE.
Li, H., Liu, X., Li, T., and Gan, R. (2020). A novel density-
based clustering algorithm using nearest neighbor
graph. Pattern Recognition, 102:107206.
MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA.
Mehta, V., Bawa, S., and Singh, J. (2021). Stamantic clus-
tering: combining statistical and semantic features for
clustering of large text datasets. Expert Systems with
Applications, 174:114710.
Mirjalili, S. and Lewis, A. (2016). The whale optimization
algorithm. Advances in engineering software, 95:51–
67.
Murtagh, F. and Contreras, P. (2012). Algorithms for hi-
erarchical clustering: an overview. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Dis-
covery, 2(1):86–97.
Na, S., Xumin, L., and Yong, G. (2010). Research on k-
means clustering algorithm: An improved k-means
clustering algorithm. In 2010 Third International
Symposium on intelligent information technology and
security informatics, pages 63–67. Ieee.
Nasiri, J. and Khiyabani, F. M. (2018). A whale optimiza-
tion algorithm (woa) approach for clustering. Cogent
Mathematics & Statistics, 5(1):1483565.
Shelokar, P., Jayaraman, V. K., and Kulkarni, B. D. (2004).
An ant colony approach for clustering. Analytica
chimica acta, 509(2):187–195.
Stolz, M., Li, M., Feng, Z., Kunert, M., and Menzel, W.
(2018). High resolution automotive radar data cluster-
ing with novel cluster method. In 2018 IEEE Radar
Conference (RadarConf18), pages 0164–0168. IEEE.
Talbi, E. (2009). Metaheuristics: From design to implemen-
tation. John Wiley & Sons google schola, 2:268–308.
Van der Merwe, D. and Engelbrecht, A. P. (2003). Data
clustering using particle swarm optimization. In The
2003 Congress on Evolutionary Computation, 2003.
CEC’03., volume 1, pages 215–220. IEEE.
Vasireddi, H. K. and Suganya Devi, K. (2021). An
ideal big data architectural analysis for medical im-
age data classification or clustering using the map-
reduce frame work. In ICCCE 2020: Proceedings of
the 3rd International Conference on Communications
and Cyber Physical Engineering, pages 1481–1494.
Springer.
Wan, M., Li, L., Xiao, J., Wang, C., and Yang, Y. (2012).
Data clustering using bacterial foraging optimization.
Journal of Intelligent Information Systems, 38:321–
341.
Zou, Q., Lin, G., Jiang, X., Liu, X., and Zeng, X. (2020).
Sequence clustering in bioinformatics: an empirical
study. Briefings in bioinformatics, 21(1):1–10.
ICORES 2025 - 14th International Conference on Operations Research and Enterprise Systems
220