
H., and Nagpal, K. (2022). Artificial intelligence for
diagnosis and Gleason grading of prostate cancer: the
PANDA challenge. Nat Med, 28(1):154–163.
Chen, Z. (2023). Medical Image Segmentation Based on
U-Net. J. Phys.: Conf. Ser., 2547(1):012010.
Ciga, O., Xu, T., Nofech-Mozes, S., Noy, S., Lu, F.-I., and
Martel, A. L. (2021). Overcoming the limitations of
patch-based learning to detect cancer in whole slide
images. Sci Rep, 11(1):8894.
Corte, D. D. (2023). Towards a Clinically Useful AI
Tool for Prostate Cancer Detection: Recommenda-
tions from a PANDA Dataset Analysis. JCRMHS,
5(3).
Dablain, D., Krawczyk, B., and Chawla, N. (2024). To-
wards a holistic view of bias in machine learning:
bridging algorithmic fairness and imbalanced learn-
ing. Discov Data, 2(1):4.
Damkliang, K., Thongsuksai, P., Kayasut, K., Wongsiri-
chot, T., Jitsuwan, C., and Boonpipat, T. (2023). Bi-
nary semantic segmentation for detection of prostate
adenocarcinoma using an ensemble with attention and
residual U-Net architectures. PeerJ Computer Sci-
ence, page e1767.
Falahkheirkhah, K., Tiwari, S., Yeh, K., Gupta, S., Herrera-
Hernandez, L., McCarthy, M. R., Jimenez, R. E.,
Cheville, J. C., and Bhargava, R. (2023). Deepfake
Histologic Images for Enhancing Digital Pathology.
Laboratory Investigation, 103(1):100006.
Gleason, D. F. and Mellinger, G. T. (1974). Predic-
tion of Prognosis for Prostatic Adenocarcinoma by
Combined Histological Grading and Clinical Staging.
Journal of Urology, 111(1):58–64.
Guerrero, E. D., Lina, R., Lina, R., Bocklitz, T., Popp,
J., and Oliveira, J. L. (2024). A Data Augmenta-
tion Methodology to Reduce the Class Imbalance in
Histopathology Images. J Digit Imaging. Inform. med.
Haghofer, A., Fuchs-Baumgartinger, A., Lipnik, K.,
Klopfleisch, R., Aubreville, M., Scharinger, J., Weis-
senböck, H., Winkler, S. M., and Bertram, C. A.
(2023). Histological classification of canine and fe-
line lymphoma using a modular approach based on
deep learning and advanced image processing. Sci
Rep, 13:19436.
Hancer, E., Traoré, M., Samet, R., Yıldırım, Z., and Ne-
mati, N. (2023). An imbalance-aware nuclei segmen-
tation methodology for H&E stained histopathology
images. Biomedical Signal Processing and Control,
83:104720.
Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M.,
Riegler, M. A., Halvorsen, P., and Parasa, S. (2022).
On evaluation metrics for medical applications of ar-
tificial intelligence. Scientific Reports, 12(1):5979.
Ikromjanov, K., Bhattacharjee, S., Hwang, Y.-B., Sumon,
R. I., Kim, H.-C., and Choi, H.-K. (2022). Whole
Slide Image Analysis and Detection of Prostate Can-
cer using Vision Transformers. In 2022 ICAIIC, pages
399–402, Jeju Island, Korea, Republic of.
INCA, I. N. D. C. (2023). Estimativa 2023: incidência de
câncer no Brasil. Instituto Nacional De Câncer, Rio
de Janeiro, RJ.
Kalapahar, A., Silva-Rodríguez, and et al. (2020). Gleason
Grading of Histology Prostate Images through Seman-
tic Segmentation via Residual U-Net.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
(2018). Focal Loss for Dense Object Detection.
Meyes, R., Lu, M., de Puiseau, C. W., and Meisen, T.
(2019). Ablation Studies in Artificial Neural Net-
works.
Monaghan, T. F., Rahman, S. N., Agudelo, C. W., Wein,
A. J., Lazar, J. M., Everaert, K., and Dmochowski,
R. R. (2021). Foundational Statistical Principles
in Medical Research: Sensitivity, Specificity, Posi-
tive Predictive Value, and Negative Predictive Value.
Medicina, 57(5):503.
Nguyen, T. T. U., Nguyen, A.-T., Kim, H., Jung, Y. J.,
Park, W., and Kim, Kyoung Min, e. a. (2024). Deep-
learning model for evaluating histopathology of acute
renal tubular injury. Sci Rep, 14(1):9010.
Ozkan, T. A., Eruyar, A., Cebeci, O., Memik, O., Ozcan,
L., and Kuskonmaz, I. (2016). Interobserver variabil-
ity in Gleason histological grading of prostate cancer.
Scandinavian Journal of Urology, 50(6):420–424.
Powers, D. M. W. (2015). Evaluation Evaluation a Monte
Carlo study.
Raciti, P., Sue, J., Ceballos, R., Godrich, R., Kunz, J. D.,
Kapur, S., Reuter, V., Grady, L., Kanan, C., Klim-
stra, D. S., and Fuchs, T. J. (2020). Novel artificial
intelligence system increases the detection of prostate
cancer in whole slide images of core needle biopsies.
Modern Pathology, 33(10):2058–2066.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. In MICCAI 2015, volume 9351, pages
234–241.
Russakovsky, O. and et al. (2015). ImageNet Large Scale
Visual Recognition Challenge. Int J Comput Vis,
115(3):211–252.
R ˛aczkowska, A., Mo
˙
zejko, M., Zambonelli, J., and
Szczurek, E. (2019). ARA: accurate, reliable and ac-
tive histopathological image classification framework
with Bayesian deep learning. Sci Rep, 9(1):14347.
Silva, A. F. D., Velo, M. M. D. A. C., and Pereira, A. C.
(2016). Importância da reprodutibilidade dos méto-
dos para diagnóstico em odontologia. Rev. da Fac. de
Odontologia, UPF, 21(1).
Silva-Rodríguez, J., Colomer, A., Sales, M. A., Molina, R.,
and Naranjo, V. (2020). Going deeper through the
Gleason scoring scale: An automatic end-to-end sys-
tem for histology prostate grading and cribriform pat-
tern detection. Computer Methods and Programs in
Biomedicine, 195:105637.
Impact of Balancing and Regularization on the Semantic Segmentation of Gleason Patterns
389