
multimodality registration. In Proceedings of Spie–the
International Society for Optical Engineering, volume
10949. NIH Public Access.
Lu, Y., Hahn, J. K., and Zhang, X. (2019). 3d shape-based
body composition inference model using a bayesian
network. IEEE journal of biomedical and health in-
formatics, 24(1):205–213.
Lu, Y., McQuade, S., and Hahn, J. K. (2018a). 3d shape-
based body composition prediction model using ma-
chine learning. In 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 3999–4002. IEEE.
Lu, Y., Zhao, S., Younes, N., and Hahn, J. K. (2018b). Ac-
curate nonrigid 3d human body surface reconstruction
using commodity depth sensors. Computer animation
and virtual worlds, 29(5):e1807.
Messina, C., Albano, D., Gitto, S., Tofanelli, L., Bazzoc-
chi, A., Ulivieri, F. M., Guglielmi, G., and Sconfienza,
L. M. (2020). Body composition with dual energy x-
ray absorptiometry: from basics to new tools. Quan-
titative imaging in medicine and surgery, 10(8):1687.
Mocini, E., Cammarota, C., Frigerio, F., Muzzioli, L., Pi-
ciocchi, C., Lacalaprice, D., Buccolini, F., Donini,
L. M., and Pinto, A. (2023). Digital anthropometry:
A systematic review on precision, reliability and accu-
racy of most popular existing technologies. Nutrients,
15(2):302.
Ng, B. K., Hinton, B. J., Fan, B., Kanaya, A. M., and Shep-
herd, J. A. (2016). Clinical anthropometrics and body
composition from 3d whole-body surface scans. Euro-
pean journal of clinical nutrition, 70(11):1265–1270.
Ng, B. K., Sommer, M. J., Wong, M. C., Pagano, I., Nie,
Y., Fan, B., Kennedy, S., Bourgeois, B., Kelly, N.,
Liu, Y. E., et al. (2019). Detailed 3-dimensional
body shape features predict body composition, blood
metabolites, and functional strength: the shape up!
studies. The American journal of clinical nutrition,
110(6):1316–1326.
Peng, J., Li, Q., Kuo, C.-C. J., and Zhou, M. (2003). Es-
timating gaussian curvatures from 3d meshes. In
Human Vision and Electronic Imaging VIII, volume
5007, pages 270–280. SPIE.
Pisciottano, M. V. C., Pinto, S., Szejnfeld, V., and
de Moura Castro, C. H. (2014). The relationship be-
tween lean mass, muscle strength and physical ability
in independent healthy elderly women from the com-
munity. The Journal of nutrition, health and aging,
18(5):554–558.
Rumbo-Rodr
´
ıguez, L., S
´
anchez-SanSegundo, M., Ferrer-
Cascales, R., Garc
´
ıa-D’Urso, N., Hurtado-S
´
anchez,
J. A., and Zaragoza-Mart
´
ı, A. (2021). Comparison
of body scanner and manual anthropometric measure-
ments of body shape: a systematic review. Interna-
tional journal of environmental research and public
health, 18(12):6213.
Schoenfeld, B. J., Aragon, A. A., Moon, J., Krieger,
J. W., and Tiryaki-Sonmez, G. (2017). Compari-
son of amplitude-mode ultrasound versus air displace-
ment plethysmography for assessing body composi-
tion changes following participation in a structured
weight-loss programme in women. Clinical physiol-
ogy and functional imaging, 37(6):663–668.
Schult, J., Engelmann, F., Kontogianni, T., and Leibe, B.
(2020). Dualconvmesh-net: Joint geodesic and eu-
clidean convolutions on 3d meshes. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8612–8622.
Shi, X., Chai, L., Zhang, D., and Fan, J. (2024). Asso-
ciation between complementary anthropometric mea-
sures and all-cause mortality risk in adults: Nhanes
2011–2016. European Journal of Clinical Nutrition,
pages 1–8.
Smith-Ryan, A. E., Mock, M. G., Ryan, E. D., Gerstner,
G. R., Trexler, E. T., and Hirsch, K. R. (2017). Va-
lidity and reliability of a 4-compartment body compo-
sition model using dual energy x-ray absorptiometry-
derived body volume. Clinical Nutrition, 36(3):825–
830.
Stark, E., Haffner, O., and Ku
ˇ
cera, E. (2022). Low-
cost method for 3d body measurement based on
photogrammetry using smartphone. Electronics,
11(7):1048.
Thibault, R., Genton, L., and Pichard, C. (2012). Body
composition: why, when and for who? Clinical nutri-
tion, 31(4):435–447.
Thibault, R. and Pichard, C. (2012). The evaluation of body
composition: a useful tool for clinical practice. Annals
of Nutrition and Metabolism, 60(1):6–16.
Tian, I., Liu, J., Wong, M., Kelly, N., Liu, Y., Garber, A.,
Heymsfield, S., Curless, B., and Shepherd, J. (2024).
3d convolutional deep learning for nonlinear estima-
tion of body composition from whole-body morphol-
ogy. Research Square.
Tian, I. Y., Ng, B. K., Wong, M. C., Kennedy, S., Hwaung,
P., Kelly, N., Liu, E., Garber, A. K., Curless, B.,
Heymsfield, S. B., et al. (2020). Predicting 3d body
shape and body composition from conventional 2d
photography. Medical Physics, 47(12):6232–6245.
Tian, I. Y., Wong, M. C., Nguyen, W. M., Kennedy, S., Mc-
Carthy, C., Kelly, N. N., Liu, Y. E., Garber, A. K.,
Heymsfield, S. B., Curless, B., et al. (2023). Au-
tomated body composition estimation from device-
agnostic 3d optical scans in pediatric populations.
Clinical Nutrition, 42(9):1619–1630.
Tinsley, G. M., Moore, M. L., Dellinger, J. R., Adamson,
B. T., and Benavides, M. L. (2020). Digital anthro-
pometry via three-dimensional optical scanning: eval-
uation of four commercially available systems. Euro-
pean Journal of Clinical Nutrition, 74(7):1054–1064.
Tinsley, G. M., Rodriguez, C., Siedler, M. R., Tinoco, E.,
White, S. J., LaValle, C., Brojanac, A., DeHaven, B.,
Rasco, J., Florez, C. M., et al. (2024). Mobile phone
applications for 3-dimensional scanning and digital
anthropometry: a precision comparison with tradi-
tional scanners. European Journal of Clinical Nutri-
tion, pages 1–6.
Toombs, R. J., Ducher, G., Shepherd, J. A., and De Souza,
M. J. (2012). The impact of recent technological ad-
vances on the trueness and precision of dxa to assess
body composition. Obesity, 20(1):30–39.
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
430