
REFERENCES
DE-10 standard FPGA. http://de10-standard.terasic.com/.
Almeida, F., Aksoy, L., Nguyen, Q.-L., Dupuis, S., Flottes,
M.-L., and Pagliarini, S. (2023). Resynthesis-based at-
tacks against logic locking. In 2023 24th International
Symposium on Quality Electronic Design (ISQED),
pages 1–8. IEEE.
Alrahis, L., Patnaik, S., Shafique, M., and Sinanoglu, O.
(2021). Omla: An oracle-less machine learning-based
attack on logic locking. IEEE Transactions on Circuits
and Systems II: Express Briefs, 69(3):1602–1606.
Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar,
J. D. (2006). Can machine learning be secure? In Pro-
ceedings of the 2006 ACM Symposium on Information,
computer and communications security, pages 16–25.
Bhatia, K. and Som, S. (2016). Study on white-box cryp-
tography: key whitening and entropy attacks. In 2016
5th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Di-
rections)(ICRITO), pages 323–327. IEEE.
Choudhary, J., Balasubramanian, P., Varghese, D. M., Singh,
D. P., and Maskell, D. (2019). Generalized majority
voter design method for n-modular redundant systems
used in mission-and safety-critical applications. Com-
puters, 8(1):10.
Dua, D. and Graff, C. (2017). UCI Machine Learning Repos-
itory.
El Massad, M., Garg, S., and Tripunitara, M. V. (2019). The
sat attack on ic camouflaging: Impact and potential
countermeasures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
39(8):1577–1590.
Engels, S., Hoffmann, M., and Paar, C. (2022). A critical
view on the real-world security of logic locking. Jour-
nal of Cryptographic Engineering, 12(3):229–244.
Gandhi, J., Shekhawat, D., Santosh, M., and Pandey, J. G.
(2023). Logic locking for ip security: A comprehen-
sive analysis on challenges, techniques, and trends.
Computers & Security, page 103196.
Karn, R. R. and Elfadel, I. A. M. (2022). Confidential infer-
ence in decision trees: Fpga design and implementa-
tion. In 2022 IFIP/IEEE 30th International Conference
on Very Large Scale Integration (VLSI-SoC), pages 1–6.
IEEE.
Karn, R. R., Nawaz, K., and Elfadel, I. A. M. (2023). Post-
quantum, order-preserving encryption for the confi-
dential inference in decision trees: Fpga design and
implementation. pages 1–6.
Karn, Rupesh Raj and Nawaz, Kashif and Elfadel, Ibrahim
Abe M (2023). Securing decision tree inference using
order-preserving cryptography. In 2023 IEEE 5th Inter-
national Conference on Artificial Intelligence Circuits
and Systems (AICAS), pages 1–5. IEEE.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based Learning Applied to Document Recog-
nition. Proceedings of the IEEE, 86(11):2278–2324.
Liu, Y., Zuzak, M., Xie, Y., Chakraborty, A., and Srivastava,
A. (2021). Robust and attack resilient logic locking
with a high application-level impact. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
17(3):1–22.
Pilato, C., Collini, L., Cassano, L., Sciuto, D., Garg, S., and
Karri, R. (2021). On the optimization of behavioral
logic locking for high-level synthesis. arXiv preprint
arXiv:2105.09666.
Provelengios, G., Holcomb, D., and Tessier, R. (2019). Char-
acterizing power distribution attacks in multi-user fpga
environments. In 2019 29th International Conference
on Field Programmable Logic and Applications (FPL),
pages 194–201. IEEE.
Sisejkovic, D., Collini, L., Tan, B., Pilato, C., Karri, R., and
Leupers, R. (2022). Designing ml-resilient locking
at register-transfer level. In Proceedings of the 59th
ACM/IEEE Design Automation Conference.
Sisejkovic, D., Reimann, L. M., Moussavi, E., Merchant, F.,
and Leupers, R. (2021). Logic locking at the frontiers
of machine learning: A survey on developments and
opportunities. In 2021 IFIP/IEEE 29th International
Conference on Very Large Scale Integration (VLSI-
SoC), pages 1–6. IEEE.
Taran, O., Rezaeifar, S., Holotyak, T., and Voloshynovskiy,
S. (2019). Defending against adversarial attacks by
randomized diversification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11226–11233.
Torres, R. L. S., Ranasinghe, D. C., Shi, Q., and Sample, A. P.
(2013). Sensor enabled wearable RFID technology for
mitigating the risk of falls near beds. In 2013 IEEE
International Conference on RFID, pages 191–198.
Ugulino, W., Cardador, D., Vega, K., Velloso, E., Milidi
´
u,
R., and Fuks, H. (2013). Wearable Computing: Classi-
fication of Body Postures and Movements (PUC-Rio)
Data Set. UCI Machine Learning Repository; Univer-
sity of California, Irvine, School of Information and
Computer Sciences: Irvine, CA, USA.
Velloso, E., Bulling, A., Gellersen, H., Ugulino, W., and
Fuks, H. (2013). Qualitative Activity Recognition of
Weight Lifting Exercises. In Proceedings of the 4th
Augmented Human International Conference, AH ’13,
pages 116–123, New York, NY, USA. ACM.
Wu, D. J., Feng, T., Naehrig, M., and Lauter, K. (2015).
Privately evaluating decision trees and random forests.
Cryptology ePrint Archive.
Xie, Y. and Srivastava, A. (2018). Anti-sat: Mitigating
sat attack on logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 38(2):199–207.
Yasin, M., Mazumdar, B., Rajendran, J., and Sinanoglu, O.
(2019). Hardware security and trust: logic locking as
a design-for-trust solution. The IoT Physical Layer:
Design and Implementation, pages 353–373.
Yasin, M., Rajendran, J. J., and Sinanoglu, O. (2020). Trust-
worthy hardware design: Combinational logic locking
techniques. Springer.
Yasin, M., Sengupta, A., Schafer, B. C., Makris, Y.,
Sinanoglu, O., and Rajendran, J. (2017). What to lock?
functional and parametric locking. In Proceedings of
the on Great Lakes Symposium on VLSI 2017, pages
351–356.
Logic Locking for Random Forests: Securing HDL Design and FPGA Accelerator Implementation
473