
Chase, H. (2022). Langchain.
https://github.com/hwchase17/langchain.
Du, J. and Mi, H. (2021). Dp-fp: Differentially private
forward propagation for large models. arXiv preprint
arXiv:2112.14430.
Duan, M., Suri, A., Mireshghallah, N., Min, S., Shi, W.,
Zettlemoyer, L., Tsvetkov, Y., Choi, Y., Evans, D., and
Hajishirzi, H. (2024). Do membership inference at-
tacks work on large language models? arXiv preprint
arXiv:2402.07841.
Galli, F., Melis, L., and Cucinotta, T. (2024). Noisy neigh-
bors: Efficient membership inference attacks against
llms. arXiv preprint arXiv:2406.16565.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. (2023). Retrieval-augmented
generation for large language models: A survey. arXiv
preprint arXiv:2312.10997.
Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz,
T., and Fritz, M. (2023). Not what you’ve signed up
for: Compromising real-world llm-integrated applica-
tions with indirect prompt injection. In Proceedings
of the 16th ACM Workshop on Artificial Intelligence
and Security, pages 79–90.
Guo, R., Luan, X., Xiang, L., Yan, X., Yi, X., Luo,
J., Cheng, Q., Xu, W., Luo, J., Liu, F., et al.
(2022). Manu: a cloud native vector database manage-
ment system. Proceedings of the VLDB Endowment,
15(12):3548–3561.
Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., and Zhang,
X. (2022). Membership inference attacks on machine
learning: A survey. ACM Computing Surveys (CSUR),
54(11s):1–37.
Hu, Z., Wang, C., Shu, Y., Zhu, L., et al. (2024).
Prompt perturbation in retrieval-augmented genera-
tion based large language models. arXiv preprint
arXiv:2402.07179.
Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford,
C., Chaplot, D. S., de las Casas, D., Bressand, F.,
Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R.,
Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T.,
Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mis-
tral 7B.
Kandpal, N., Pillutla, K., Oprea, A., Kairouz, P., Choquette-
Choo, C., and Xu, Z. (2023). User inference attacks
on llms. In Socially Responsible Language Modelling
Research.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., Yih, W.-t.,
Rockt
¨
aschel, T., et al. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems,
33:9459–9474.
Li, H., Guo, D., Li, D., Fan, W., Hu, Q., Liu, X., Chan,
C., Yao, D., Yao, Y., and Song, Y. (2024a). Privlm-
bench: A multi-level privacy evaluation benchmark
for language models. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 54–73.
Li, Y., Liu, G., Wang, C., and Yang, Y. (2024b).
Generating is believing: Membership inference at-
tacks against retrieval-augmented generation. arXiv
preprint arXiv:2406.19234.
Liu, Y., Jia, Y., Geng, R., Jia, J., and Gong, N. Z. (2024).
Formalizing and benchmarking prompt injection at-
tacks and defenses. In ArXiv. USENIX Security Sym-
posium.
Lyu, K., Zhao, H., Gu, X., Yu, D., Goyal, A., and Arora,
S. (2024). Keeping llms aligned after fine-tuning:
The crucial role of prompt templates. arXiv preprint
arXiv:2402.18540.
Mahloujifar, S., Inan, H. A., Chase, M., Ghosh, E.,
and Hasegawa, M. (2021). Membership inference
on word embedding and beyond. arXiv preprint
arXiv:2106.11384.
Majmudar, J., Dupuy, C., Peris, C., Smaili, S., Gupta, R.,
and Zemel, R. (2022). Differentially private decod-
ing in large language models. In NAACL 2022 Second
Workshop on Trustworthy Natural Language Process-
ing (TrustNLP).
Matthew Kosinski, A. F. (2024). What Is a Prompt Injection
Attack? — IBM — ibm.com. https://www.ibm.com/
topics/prompt-injection. [Accessed 30-07-2024].
Panda, A., Tang, X., Nasr, M., Choquette-Choo, C. A., and
Mittal, P. (2024). Privacy auditing of large language
models. In ICML 2024 Workshop on Foundation Mod-
els in the Wild.
Reynolds, L. and McDonell, K. (2021). Prompt program-
ming for large language models: Beyond the few-shot
paradigm. In Extended abstracts of the 2021 CHI con-
ference on human factors in computing systems, pages
1–7.
Shachor, S., Razinkov, N., and Goldsteen, A. (2023).
Improved membership inference attacks against
language classification models. arXiv preprint
arXiv:2310.07219.
Shejwalkar, V., Inan, H. A., Houmansadr, A., and Sim,
R. (2021). Membership inference attacks against nlp
classification models. In NeurIPS 2021 Workshop Pri-
vacy in Machine Learning.
Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
(2017). Membership inference attacks against ma-
chine learning models. In 2017 IEEE symposium on
security and privacy (SP), pages 3–18. IEEE.
Song, C. and Shmatikov, V. (2019). Auditing data prove-
nance in text-generation models. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, page
196–206, New York, NY, USA. Association for Com-
puting Machinery.
Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Wei, J.,
Wang, X., Chung, H. W., Shakeri, S., Bahri, D.,
Schuster, T., Zheng, H. S., Zhou, D., Houlsby, N., and
Metzler, D. (2023). UL2: Unifying Language Learn-
ing Paradigms.
Tramer, F., Carlini, N., Brendel, W., and Madry, A. (2020).
On adaptive attacks to adversarial example defenses.
Advances in neural information processing systems,
33:1633–1645.
Tseng, W.-C., Kao, W.-T., and Lee, H.-y. (2021). Member-
Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation
483