Healthcare Industry: Classification, Restrictions,
Opportunities and Challenges. In Sensors (Vol. 23,
Issue 9). MDPI. https://doi.org/10.3390/s23094178
Chavosh Nejad, M., Hadavandi, E., Nakhostin, M. M., &
Mehmanpazir, F. (2022). A data-driven model for
energy consumption analysis along with sustainable
production: A case study in the steel industry. Energy
Sources, Part A: Recovery, Utilization and
Environmental Effects, 44(2), 3360–3380.
https://doi.org/10.1080/15567036.2022.2064943
Chavosh Nejad, M., Vestergaard Matthiesen, R.,
Dukovska-Popovska, I., Jakobsen, T., & Johansen, J.
(2024). Machine learning for predicting duration of
surgery and length of stay: A literature review on joint
arthroplasty. International Journal of Medical
Informatics, 192, 105631. https://doi.org/10.1016/j.
ijmedinf.2024.105631
Crowson, C. S., Gunderson, T. M., Davis, J. M.,
Myasoedova, E., Kronzer, V. L., Coffey, C. M., &
Atkinson, E. J. (2023). Using Unsupervised Machine
Learning Methods to Cluster Comorbidities in a
Population-Based Cohort of Patients With Rheumatoid
Arthritis. Arthritis Care and Research, 75(2), 210–219.
https://doi.org/10.1002/acr.24973
Eshghali, M., Mohammad, A., & Sikaroudi, E. (2023).
Machine learning based integrated scheduling.
Grant, R. W., McCloskey, J., Hatfield, M., Uratsu, C.,
Ralston, J. D., Bayliss, E., & Kennedy, C. J. (2020). Use
of Latent Class Analysis and k-Means Clustering to
Identify Complex Patient Profiles. JAMA
Network Open, 3(12). https://doi.org/10.1001/
jamanetworkopen.2020.29068
Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, H.,
& Liu, D. (2019). Patient clustering improves
efficiency of federated machine learning to predict
mortality and hospital stay time using distributed
electronic medical records. Journal of Biomedical
Informatics, 99. https://doi.org/10.1016/j.jbi.2019.
103291
Kuo, T., & Wang, K. J. (2022). A hybrid k-prototypes
clustering approach with improved sine-cosine
algorithm for mixed-data classification. Computers and
Industrial Engineering, 169. https://doi.org/10.
1016/j.cie.2022.108164
Madhuri, R. , et al. (2014). Cluster analysis on different data
sets using K-modes and K-prototype algorithms. ICT
and Critical Infrastructure: Proceedings of the 48th
Annual Convention of Computer Society of India-Vol
II: Hosted by CSI Vishakapatnam Chapter, 137–144.
Mannion, A. F., Nauer, S., Arsoy, D., Impellizzeri, F. M.,
& Leunig, M. (2020). The Association Between
Comorbidity and the Risks and Early Benefits of Total
Hip Arthroplasty for Hip Osteoarthritis. Journal of
Arthroplasty, 35(9), 2480–2487. https://doi.org/10.
1016/j.arth.2020.04.090
Melo Riveros, N. A., Cardenas Espitia, B. A., & Aparicio
Pico, L. E. (2019). Comparison between K-means and
Self-Organizing Maps algorithms used for diagnosis
spinal column patients. Informatics in Medicine
Unlocked, 16. https://doi.org/10.1016/j.imu.
2019.100206
Nanda, A., Mohapatra, Dr. B. B., Mahapatra, A. P. K.,
Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021).
Multiple comparison test by Tukey’s honestly
significant difference (HSD): Do the confident level
control type I error. International Journal of Statistics
and Applied Mathematics, 6(1), 59–65.
https://doi.org/10.22271/maths.2021.v6.i1a.636
Nouraei, H., Nouraei, H., & Rabkin, S. W. (2022).
Comparison of Unsupervised Machine Learning
Approaches for Cluster Analysis to Define Subgroups
of Heart Failure with Preserved Ejection Fraction with
Different Outcomes. Bioengineering, 9(4).
https://doi.org/10.3390/bioengineering9040175
Pasin, O., & Gonenc, S. (2023). An investigation into
epidemiological situations of COVID-19 with fuzzy K-
means and K-prototype clustering methods. Scientific
Reports, 13(1). https://doi.org/10.1038/s41598-023-
33214-y
Rahimi, I., & Gandomi, A. H. (2021). A Comprehensive
Review and Analysis of Operating Room and Surgery
Scheduling. Archives of Computational Methods in
Engineering, 28(3), 1667–1688. https://doi.org/10.
1007/s11831-020-09432-2
Ranti, D., Warburton, A. J., Hanss, K., Katz, D., Poeran, J.,
& Moucha, C. (2020). K-Means Clustering to Elucidate
Vulnerable Subpopulations Among Medicare Patients
Undergoing Total Joint Arthroplasty. Journal of
Arthroplasty, 35(12), 3488–3497. https://doi.org/10.
1016/j.arth.2020.06.063
Thomas Schneider, A. J., Theresia van Essen, J., Carlier,
M., & Hans, E. W. (2020). Scheduling surgery groups
considering multiple downstream resources. European
Journal of Operational Research, 282(2), 741–752.
https://doi.org/10.1016/j.ejor.2019.09.029
Thongprayoon, C., Mao, M. A., Keddis, M. T., Kattah, A.
G., Chong, G. Y., Pattharanitima, P., Nissaisorakarn,
V., Garg, A. K., Erickson, S. B., Dillon, J. J., Garovic,
V. D., & Cheungpasitporn, W. (2022). Hypernatremia
subgroups among hospitalized patients by machine
learning consensus clustering with different patient
survival. Journal of Nephrology, 35(3), 921–929.
https://doi.org/10.1007/s40620-021-01163-2
Wang, Y., Zhao, Y., Therneau, T. M., Atkinson, E. J., Tafti,
A. P., Zhang, N., Amin, S., Limper, A. H., Khosla, S.,
& Liu, H. (2020). Unsupervised machine learning for
the discovery of latent disease clusters and patient
subgroups using electronic health records. Journal of
Biomedical Informatics, 102. https://doi.org/10.
1016/j.jbi.2019.103364
Yeung, E., Jackson, M., Sexton, S., Walter, W., & Zicat, B.
(2011). The effect of obesity on the outcome of hip and
knee arthroplasty. In International Orthopaedics (Vol.
35, Issue 6, pp. 929–934). https://doi.org/10.
1007/s00264-010-1051-3
Yuniartha, D. R., Masruroh, N. A., & Herliansyah, M. K.
(2021). An evaluation of a simple model for predicting
surgery duration using a set of surgical procedure