REFERENCES
Aggarwal, R., Ward, J., Balasundaram, I., Sains, P.,
Athanasiou, T., and Darzi, A. (2007). Proving the
effectiveness of virtual reality simulation for training in
laparoscopic surgery. Annals of Surgery, 246(5), 771–
779.
Aggarwal, R., Crochet, P., Dias, A., Misra, A., Ziprin, P.,
and Darzi, A. (2009). Development of a virtual reality
training curriculum for laparoscopic cholecystectomy.
British Journal of Surgery, 96(9), 1086–1093.
Benmansour, M., Malti, A., and Jannin, P. (2023). Deep
neural network architecture for automated soft surgical
skills evaluation using objective structured assessment
of technical skills criteria. International Journal of
Computer Assisted Radiology and Surgery, 18(5), 929–
937.
Dosis, A., Aggarwal, R., Bello, F., Moorthy, K., Munz, Y.,
Gillies, D., and Darzi, A. (2005). Synchronized video
and motion analysis for the assessment of procedures in
the operating theater. Archives of Surgery, 140(3), 293–
299.
Fard, M. J., Ameri, S., Darin Ellis, R., Chinnam, R. B.,
Pandya, A. K., and Klein, M. D. (2018). Automated
robot-assisted surgical skill evaluation: Predictive
analytics approach. International Journal of Medical
Robotics and Computer Assisted Surgery, 14(1), 1–10.
Fisher, A., Rudin, C., and Dominici, F. (2019). All models
are wrong, but many are useful: learning a variable’s
importance by studying an entire class of prediction
models simultaneously. Journal of Machine Learning
Research, 20, 177.
Fogelson, N., Loukas, C., Brown, J., and Brown, P. (2004).
A common N400 EEG component reflecting contextual
integration irrespective of symbolic form. Clinical
Neurophysiology, 115(6), 1349–1358.
Guedes, H. G., Câmara Costa Ferreira, Z. M., Ribeiro de
Sousa Leão, L., Souza Montero, E. F., Otoch, J. P., and
Luiz de Almeida Artifon, E. (2019). Virtual reality
simulator versus box-trainer to teach minimally
invasive procedures: A meta-analysis. International
Journal of Surgery, 61, 60–68.
Ikonen, T. S., Antikainen, T., Silvennoinen, M., Isojärvi, J.,
Mäkinen, E., and Scheinin, T. M. (2012). Virtual reality
simulator training of laparoscopic cholecystectomies-A
systematic review. Scandinavian Journal of Surgery,
101(1), 5–12.
Kowalewski, K. F., Garrow, C. R., Schmidt, M. W.,
Benner, L., Müller-Stich, B. P., and Nickel, F. (2019).
Sensor-based machine learning for workflow detection
and as key to detect expert level in laparoscopic
suturing and knot-tying. Surgical Endoscopy, 33(11),
3732–3740.
Larsen, C. R., Grantcharov, T., Aggarwal, R., Tully, A.,
Sørensen, J. L., Dalsgaard, T., and Ottesen, B. (2006).
Objective assessment of gynecologic laparoscopic
skills using the LapSimGyn virtual reality simulator.
Surgical Endoscopy and Other Interventional
Techniques, 20(9), 1460–1466.
Loukas, C., Nikiteas, N., Kanakis, M., and Georgiou, E.
(2011). The contribution of simulation training in
enhancing key components of laparoscopic
competence. The American Surgeon, 77(6), 708–715.
Lundberg, S. M., Allen, P. G., and Lee, S.-I. (2017). A
unified approach to interpreting model predictions.
Proceedings of the 31
st
International Conference on
Neural Information Processing Systems, 4768–4777.
Martin, J.A., Regehr, G., Reznick, R., Macrae, H.,
Murnaghan, J., Hutchison, C., Brown, M (1997).
Objective Structured Assessment of Technical Skill
(OSATS) for surgical residents. British Journal of
Surgery, 84(2), 273–278.
Matzke, J., Ziegler, C., Martin, K., Crawford, S., and
Sutton, E. (2017). Usefulness of virtual reality in
assessment of medical student laparoscopic skill.
Journal of Surgical Research, 211, 191–195.
Mirchi, N., Bissonnette, V., Yilmaz, R., Ledwos, N.,
Winkler-Schwartz, A., and Del Maestro, R. F. (2020).
The Virtual Operative Assistant: An explainable
artificial intelligence tool for simulation-based training
in surgery and medicine. PLoS ONE, 15(2), e0229596.
Moglia, A., Morelli, L., D’Ischia, R., Fatucchi, L. M.,
Pucci, V., Berchiolli, R., Ferrari, M., and Cuschieri, A.
(2022). Ensemble deep learning for the prediction of
proficiency at a virtual simulator for robot-assisted
surgery. Surgical Endoscopy, 36(9), 6473–6479.
Molnar, C. (2022). Interpretable machine learning: a guide
for making black box models explainable. Ebook.
https://christophm.github.io/interpretable-ml-book/.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Model-
agnostic interpretability of machine learning. arXiv
preprint. arXiv:1606.05386v1.
Rosen, J., Brown, J. D., Chang, L., Sinanan, M. N., and
Hannaford, B. (2006). Generalized approach for
modeling minimally invasive surgery as a stochastic
process using a discrete Markov model. IEEE
Transactions on Bio-Medical Engineering, 53(3), 399–
413.
Shafiei, S. B., Durrani, M., Jing, Z., Mostowy, M., Doherty,
P., Hussein, A. A., Elsayed, A. S., Iqbal, U., and Guru,
K. (2021). Surgical hand gesture recognition utilizing
electroencephalogram as input to the machine learning
and network neuroscience algorithms. Sensors, 21(5),
1733.
Siyar, S., Azarnoush, H., Rashidi, S., Winkler-Schwartz,
A., Bissonnette, V., Ponnudurai, N., and Del Maestro,
R. F. (2020). Machine learning distinguishes
neurosurgical skill levels in a virtual reality tumor
resection task. Medical and Biological Engineering and
Computing, 58(6), 1357–1367.
Soto Rodriguez, N. A., Arroyo Kuribreña, C., Porras
Hernández, J. D., Gutiérrez-Gnecchi, J. A., Pérez-
Escamirosa, F., Rigoberto, M. M., Minor-martinez, A.,
and Lorias-Espinoza, D. (2023). Objective evaluation
of laparoscopic experience based on muscle
electromyography and accelerometry performing
circular pattern cutting Tasks: a pilot study. Surgical
Innovation, 30(4), 493–500.