
M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X.,
Song, R., Tang, J., Wen, J.-R., Yuan, J., Zhao, W. X.,
and Zhu, J. (2021). Pre-trained models: Past, present
and future. AI Open, 2:225–250.
Ippolito, D., Yuan, A., Coenen, A., and Burnam, S.
(2022). Creative Writing with an AI-Powered Writ-
ing Assistant: Perspectives from Professional Writers.
http://arxiv.org/abs/2211.05030.
Islam, N., Sutradhar, D., Noor, H., Raya, J. T., Maisha,
M. T., and Farid, D. M. (2023). Distinguishing human
generated text from ChatGPT generated text using
machine learning. http://arxiv.org/abs/2306.01761.
Janicka, M., Pszona, M., and Wawer, A. (2019). Cross-
domain failures of fake news detection. Computaci
´
on
y Sistemas, 23(3):1089–1097. Publisher: Insti-
tuto Polit
´
ecnico Nacional, Centro de Investigaci
´
on en
Computaci
´
on.
Jawahar, G., Abdul-Mageed, M., and Lakshmanan,
L. V. S. (2020). Automatic detection of
machine generated text: A critical survey.
http://arxiv.org/abs/2011.01314.
Koplin, J. J. (2023). Dual-use implications of AI text gen-
eration. Ethics and Information Technology, 25(2):32.
Landa-Blanco, M., Flores, M. A., and Mercado, M. (2023).
Human vs. AI Authorship: Does it Matter in Evaluat-
ing Creative Writing? A Pilot Study Using ChatGPT.
https://tinyurl.com/landa-2023.
Liao, W., Liu, Z., Dai, H., Xu, S., Wu, Z., Zhang, Y., Huang,
X., Zhu, D., Cai, H., Liu, T., and Li, X. (2023). Differ-
entiate ChatGPT-generated and human-written medi-
cal texts. http://arxiv.org/abs/2304.11567.
Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., and
Finn, C. (2023). DetectGPT: Zero-shot machine-
generated text detection using probability curvature.
http://arxiv.org/abs/2301.11305.
Odri, G.-A. and Yoon, D. J. Y. (2023). Detecting genera-
tive artificial intelligence in scientific articles: evasion
techniques and implications for scientific integrity.
Orthopaedics & Traumatology: Surgery & Research,
109(8):103706.
Orenstrakh, M. S., Karnalim, O., Suarez, C. A., and Liut,
M. (2023). Detecting LLM-generated text in com-
puting education: A comparative study for ChatGPT
cases. http://arxiv.org/abs/2307.07411.
Oviedo-Trespalacios, O., Peden, A. E., Cole-Hunter, T.,
Costantini, A., Haghani, M., Rod, J. E., Kelly, S.,
Torkamaan, H., Tariq, A., and Newton, J. D. A.
(2023). The risks of using ChatGPT to obtain common
safety-related information and advice. Safety science,
167:106244. Publisher: Elsevier.
Pandey, A. K. and Roy, S. S. (2023). Natural language gen-
eration using sequential models: A survey. Neural
Processing Letters, 55(6):7709–7742.
Puttarattanamanee, M., Boongasame, L., and Thammarak,
K. (2023). A comparative study of sentiment analy-
sis methods for detecting fake reviews in e-commerce.
HighTech and Innovation Journal, 4(2):349–363.
Number: 2.
Robins-Early, N. (2024). Billie Eilish, Nicki Minaj, Ste-
vie Wonder and more musicians demand protection
against AI. https://tinyurl.com/robins-2024.
Salamon, E. (2024). Negotiating Technological Change:
How Media Unions Navigate Artificial Intelligence
in Journalism. Journalism & Communication Mono-
graphs, 26(2):159–163.
Stojanovic, L., Radojcic, V., Savic, S., Sandro, A., and
Cvetkovic, D. S. (2023). The Influence of Artificial
Intelligence on Creative Writing: Exploring the Syn-
ergy between AI and Creative Authorship. Interna-
tional Journal of Engineering Inventions.
Su, J., Zhuo, T. Y., Wang, D., and Nakov, P.
(2023). DetectLLM: Leveraging log rank informa-
tion for zero-shot detection of machine-generated text.
http://arxiv.org/abs/2306.05540.
Sudhakar, M. and Kaliyamurthie, K. P. (2022). Effective
prediction of fake news using two machine learning
algorithms. Measurement: Sensors, 24:100495.
Sudhakar, M. and Kaliyamurthie, K. P. (2024). Detection
of fake news from social media using support vector
machine learning algorithms. Measurement: Sensors,
32:101028.
The Authors Guild (2024). AI Is Driving a New Surge of
Sham “Books” on Amazon. https://tinyurl.com/sham-
2024.
Vaswani, A. (2017). Attention is all you need. Advances in
Neural Information Processing Systems.
Venkatraman, S., Uchendu, A., and Lee, D.
(2023). GPT-who: An information density-
based machine-generated text detector.
http://arxiv.org/abs/2310.06202.
Verma, V., Fleisig, E., Tomlin, N., and Klein, D. (2023).
Ghostbuster: Detecting text ghostwritten by large lan-
guage models. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1702–1717.
Association for Computational Linguistics.
Wach, K., Doanh Duong, C., Ejdys, J., Kazlauskait
˙
e, R.,
Korzynski, P., Mazurek, G., Paliszkiewicz, J., and
Ziemba, E. (2023). The dark side of generative arti-
ficial intelligence: A critical analysis of controversies
and risks of ChatGPT. Entrepreneurial Business and
Economics Review, pages 7–30. Num Pages: 7-30
Publisher: Cracow University of Economics.
Walters, W. H. (2023). The effectiveness of software de-
signed to detect AI-generated writing: A comparison
of 16 AI text detectors. Open Information Science,
7(1). Publisher: De Gruyter Open Access.
Zaitsu, W. and Jin, M. (2023). Distinguishing
ChatGPT(-3.5, -4)-generated and human-written pa-
pers through Japanese stylometric analysis. PLoS
One, 18(8):e0288453.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
90