
tegration of orientation information provided by the
robotic platforms, as well as refinements on the track-
ing accuracy by including the model dimension infor-
mation in the final position estimation. Supplemen-
tary documentation and the source code are available
at https://github.com/IoT-Lab-Minden/RP Tracking.
REFERENCES
Catalano, I., Sier, H., Yu, X., Westerlund, T., and Quer-
alta, J. P. (2023a). Uav tracking with solid-state lidars:
Dynamic multi-frequency scan integration. arXiv
preprint arXiv:2304.12125.
Catalano, I., Yu, X., and Queralta, J. P. (2023b). Towards
robust uav tracking in gnss-denied environments: a
multi-lidar multi-uav dataset. In IEEE International
Conference on Robotics and Biomimetics (ROBIO).
Chen, H., Chen, X., Chuanlong Xie and, S. W., Zhou, Q.,
Zhou, Y., Wang, S., Su, H., and Quanfeng Xu and,
Y. L. (2024). Uav tracking and pose-estimation - te-
chinical report for cvpr 2024 ug2 challenge. In Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
Deng, T., Zhou, Y., Wu, W., Li, M., Huang, J., Liu, S.,
Song, Y., Zuo, H., Wang, Y., Wang, H., and Chen,
W. (2024). Multi-modal uav detection, classification
and tracking algorithm - technical report for cvpr 2024
ug2 challenge. In Conference on Computer Vision and
Pattern Recognition (CVPR).
Dogru, S. and Marques, L. (2022). Drone detection using
sparse lidar measurements. IEEE Robotics and Au-
tomation Letters, 7(2).
Furtado, J. S., Liu, H. H., Lai, G., Lacheray, H., and
Desouza-Coelho, J. (2019). Comparative analysis of
optitrack motion capture systems. In Advances in Mo-
tion Sensing and Control for Robotic Applications.
Gazdag, S., M
¨
oller, T., Filep, T., Keszler, A., and Majdik,
A. L. (2024). Detection and tracking of mavs using
a lidar with rosette scanning pattern. arXiv preprint
arXiv:2408.08555.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. International
Journal of Robotics Research (IJRR).
Giancola, S., Zarzar, J., and Ghanem, B. (2019). Lever-
aging shape completion for 3d siamese tracking. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Kaku, K., Okada, Y., and Niijima, K. (2004). Similarity
measure based on obbtree for 3d model search. In In-
ternational Conference on Computer Graphics, Imag-
ing and Visualization (CGIV).
Nie, J., Xie, F., Zhou, S., Zhou, X., Chae, D.-K., and
He, Z. (2024). P2p: Part-to-part motion cues guide
a strong tracking framework for lidar point clouds.
arXiv preprint arXiv:2407.05238.
Pleterski, J.,
ˇ
Skulj, G., Esnault, C., Puc, J., Vrabi
ˇ
c, R.,
and Podr
ˇ
zaj, P. (2023). Miniature mobile robot detec-
tion using an ultralow-resolution time-of-flight sensor.
IEEE Transactions on Instrumentation and Measure-
ment, 72.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. arXiv preprint arXiv:1706.02413.
Qi, H., Feng, C., Cao, Z., Zhao, F., and Xiao, Y. (2020).
P2b: Point-to-box network for 3d object tracking in
point clouds. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
Qingqing, L., Xianjia, Y., Queralta, J. P., and Westerlund, T.
(2021). Adaptive lidar scan frame integration: Track-
ing known mavs in 3d point clouds. In International
Conference on Advanced Robotics (ICAR).
Shule, W., Almansa, C. M., Queralta, J. P., Zou, Z., and
Westerlund, T. (2020). Uwb-based localization for
multi-uav systems and collaborative heterogeneous
multi-robot systems. Procedia Computer Science.
Sier, H., Yu, X., Catalano, I., Queralta, J. P., Zou, Z., and
Westerlund, T. (2023). Uav tracking with lidar as a
camera sensor in gnss-denied environments. In Inter-
national Conference on Localization and GNSS (ICL-
GNSS).
Taffanel, A., Rousselot, B., Danielsson, J., McGuire, K.,
Richardsson, K., Eliasson, M., Antonsson, T., and
H
¨
onig, W. (2021). Lighthouse positioning system:
Dataset, accuracy, and precision for uav research.
arXiv preprint arXiv:2104.11523.
Was¸ik, A., Ventura, R., Pereira, J. N., Lima, P. U., and Mar-
tinoli, A. (2015). Lidar-based relative position esti-
mation and tracking for multi-robot systems. In Robot
2015: Second Iberian Robotics Conference.
Wang, H., Chen, C., He, Y., Sun, S., Li, L., Xu, Y., and
Yang, B. (2024). Easy rocap: A low-cost and easy-to-
use motion capture system for drones. Drones, 8(4).
Wang, H., Peng, Y., Liu, L., and Liang, J. (2021). Study
on target detection and tracking method of uav based
on lidar. In Global Reliability and Prognostics and
Health Management (PHM-Nanjing).
Yilmaz, Z. and Bayindir, L. (2022). Lidar-based robot de-
tection and positioning using machine learning meth-
ods. Balkan Journal of Electrical and Computer En-
gineering, 10(2).
Yuan, S., Yang, Y., Nguyen, T. H., Nguyen, T.-M., Yang, J.,
Liu, F., Li, J., Wang, H., and Xie, L. (2024). Mmaud:
A comprehensive multi-modal anti-uav dataset for
modern miniature drone threats. In IEEE Inter-
national Conference on Robotics and Automation
(ICRA).
Zhou, C., Luo, Z., Luo, Y., Liu, T., Pan, L., Cai, Z., Zhao,
H., and Lu, S. (2022). Pttr: Relational 3d point cloud
object tracking with transformer. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
578