
image classification: The evolution from conventional
to transformers. arXiv abs/2404.14955.
Ahmad, M., Shabbir, S., Roy, S. K., Hong, D., Wu, X.,
Yao, J., Khan, A. M., Mazzara, M., Distefano, S., and
Chanussot, J. (2022). Hyperspectral image classifica-
tion—traditional to deep models: A survey for future
prospects. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 15:968–999.
Chakraborty, T. and Trehan, U. (2021). Spectralnet: Ex-
ploring spatial-spectral waveletcnn for hyperspectral
image classification. ArXiv, abs/2104.00341.
Frank, H., Varga, L. A., and Zell, A. (2023). Hyperspec-
tral benchmark: Bridging the gap between hsi applica-
tions through comprehensive dataset and pretraining.
arXiv preprint arXiv:2309.11122.
Ghamisi, P., Maggiori, E., Li, S., Souza, R., Tarablaka, Y.,
Moser, G., De Giorgi, A., Fang, L., Chen, Y., Chi, M.,
Serpico, S. B., and Benediktsson, J. A. (2018). New
frontiers in spectral-spatial hyperspectral image clas-
sification: The latest advances based on mathemati-
cal morphology, markov random fields, segmentation,
sparse representation, and deep learning. IEEE Geo-
science and Remote Sensing Magazine, 6(3):10–43.
Ghazal, S., Munir, A., and Qureshi, W. S. (2024). Com-
puter vision in smart agriculture and precision farm-
ing: Techniques and applications. Artificial Intelli-
gence in Agriculture, 13:64–83.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society.
Hong, D., Han, Z., Yao, J., Gao, L., Zhang, B., Plaza, A.,
and Chanussot, J. (2022). Spectralformer: Rethinking
hyperspectral image classification with transformers.
IEEE Trans. Geosci. Remote. Sens., 60:1–15.
Kumar, V., Singh, R. S., Rambabu, M., and Dua, Y. (2024).
Deep learning for hyperspectral image classification:
A survey. Computer Science Review, 53:100658.
Lorenzo, P. R., Tulczyjew, L., Marcinkiewicz, M., and
Nalepa, J. (2020). Hyperspectral band selection using
attention-based convolutional neural networks. IEEE
Access, 8:42384–42403.
Lu, Y. and Young, S. (2020). A survey of public datasets for
computer vision tasks in precision agriculture. Com-
puters and Electronics in Agriculture, 178:105760.
Luo, J., Li, B., and Leung, C. (2023). A survey of com-
puter vision technologies in urban and controlled-
environment agriculture. ACM Computing Surveys,
56(5):1–39.
Paoletti, M. E., Haut, J. M., Plaza, J., and Plaza, A. J.
(2019). Deep learning classifiers for hyperspectral
imaging: A review. Isprs Journal of Photogramme-
try and Remote Sensing, 158:279–317.
Pinto Barrera, J., Rueda-Chac
´
on, H., Arguello, H., and
De, A. (2019). Classification of hass avocado (persea
americana mill) in terms of its ripening via hyperspec-
tral images. TecnoL
´
ogicas, 22:109–128.
Ram, B. G., Oduor, P., Igathinathane, C., Howatt, K., and
Sun, X. (2024). A systematic review of hyperspectral
imaging in precision agriculture: Analysis of its cur-
rent state and future prospects. Computers and Elec-
tronics in Agriculture, 222:109037.
Rizzo, M., Marcuzzo, M., Zangari, A., Gasparetto, A., and
Albarelli, A. (2023). Fruit ripeness classification: A
survey. Artificial Intelligence in Agriculture, 7:44–57.
Roy, S. K., Krishna, G., Dubey, S. R., and Chaudhuri, B. B.
(2020). Hybridsn: Exploring 3-d-2-d CNN feature hi-
erarchy for hyperspectral image classification. IEEE
Geosci. Remote. Sens. Lett., 17(2):277–281.
Varga, L. A., Frank, H., and Zell, A. (2023a). Self-
supervised pretraining for hyperspectral classification
of fruit ripeness. In 6th International Conference on
Optical Characterization of Materials, OCM 2023,
pages 97–108.
Varga, L. A., Makowski, J., and Zell, A. (2021). Measuring
the ripeness of fruit with hyperspectral imaging and
deep learning. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–8.
Varga, L. A., Messmer, M., Benbarka, N., and Zell, A.
(2023b). Wavelength-aware 2d convolutions for hy-
perspectral imaging. In 2023 IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV),
pages 3777–3786.
Yang, X., Cao, W., Lu, Y., and Zhou, Y. (2022). Hyperspec-
tral image transformer classification networks. IEEE
Trans. Geosci. Remote. Sens., 60:1–15.
Zhu, H., Chu, B., Fan, Y., Tao, X., Yin, W., and He, Y.
(2017). Hyperspectral imaging for predicting the in-
ternal quality of kiwifruits based on variable selection
algorithms and chemometric models. Scientific Re-
ports, 7.
Fruit-HSNet: A Machine Learning Approach for Hyperspectral Image-Based Fruit Ripeness Prediction
111