
tures of polish sign language. Pattern Recognition,
43(6):2249–2264.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Jeny, J. R. V., Anjana, A., Monica, K., Sumanth, T., and Ma-
matha, A. (2021). Hand gesture recognition for sign
language using convolutional neural network. In 2021
5th International Conference on Trends in Electronics
and Informatics (ICOEI), pages 1713–1721. IEEE.
Jiang, S., Lv, B., Guo, W., Zhang, C., Wang, H., Sheng, X.,
and Shull, P. B. (2017). Feasibility of wrist-worn, real-
time hand, and surface gesture recognition via semg
and imu sensing. IEEE Transactions on Industrial In-
formatics, 14(8):3376–3385.
Jiang, S., Sun, B., Wang, L., Bai, Y., Li, K., and Fu, Y.
(2021). Skeleton aware multi-modal sign language
recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 3413–3423.
Kang, B., Tripathi, S., and Nguyen, T. Q. (2015). Real-time
sign language fingerspelling recognition using convo-
lutional neural networks from depth map. In 2015
3rd IAPR Asian Conference on Pattern Recognition
(ACPR), pages 136–140. IEEE.
Kapuscinski, T. and Wysocki, M. (2005). Recognition of
isolated words of the polish sign language. In Com-
puter Recognition Systems: Proceedings of the 4th In-
ternational Conference on Computer Recognition Sys-
tems CORES’05, pages 697–704. Springer.
Kołodziej, M., Szypuła, E., Majkowski, A., and Rak, R.
(2022). Using deep learning to recognize the sign al-
phabet. Przegl ˛ad Elektrotechniczny, 98.
Korzeniewska, E., Kania, M., and Zawi
´
slak, R. (2022). Tex-
tronic glove translating polish sign language. Sensors,
22(18):6788.
LeCun, Y., Bottou, L. o., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Linde-Usiekniewicz, J., Czajkowska-Kisil, M., Łacheta, J.,
and Rutkowski, P. (2014). A corpus-based dictionary
of polish sign language (pjm). pages 365–376.
Linde-Usiekniewicz, J., Czajkowska-Kisil, M., Łacheta, J.,
and Rutkowski, P. (2016). Korpusowy słownik pol-
skiego jezyka migowego/corpus-based dictionary of
polish sign language.
Quiroga, F., Antonio, R., Ronchetti, F., Lanzarini, L. C.,
and Rosete, A. (2017). A study of convolutional ar-
chitectures for handshape recognition applied to sign
language. In XXIII Congreso Argentino de Ciencias
de la Computación (La Plata, 2017).
Raghuveera, T., Deepthi, R., Mangalashri, R., and Akshaya,
R. (2020). A depth-based indian sign language recog-
nition using microsoft kinect. S = adhan = a, 45:1–13.
Rao, G. A., Syamala, K., Kishore, P., and Sastry, A. (2018).
Deep convolutional neural networks for sign language
recognition. In 2018 conference on signal processing
and communication engineering systems (SPACES),
pages 194–197. IEEE.
Rastgoo, R., Kiani, K., and Escalera, S. (2020a). Hand sign
language recognition using multi-view hand skeleton.
Expert Systems with Applications, 150:113336.
Rastgoo, R., Kiani, K., and Escalera, S. (2020b). Video-
based isolated hand sign language recognition using a
deep cascaded model. Multimedia Tools and Applica-
tions, 79:22965–22987.
Sarma, N., Talukdar, A. K., and Sarma, K. K. (2021). Real-
time indian sign language recognition system using
yolov3 model. In 2021 Sixth International Conference
on Image Information Processing (ICIIP), volume 6,
pages 445–449. IEEE.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2014). Striving for simplicity: The all con-
volutional net. arXiv preprint arXiv:1412.6806.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Tan, C. K., Lim, K. M., Chang, R. K. Y., Lee, C. P., and
Alqahtani, A. (2023). Hgr-vit: Hand gesture recogni-
tion with vision transformer. Sensors, 23(12):5555.
Tan, Y. S., Lim, K. M., and Lee, C. P. (2021). Hand gesture
recognition via enhanced densely connected convolu-
tional neural network. Expert Systems with Applica-
tions, 175:114797.
Warchoł, D., Kapu
´
sci
´
nski, T., and Wysocki, M. (2019).
Recognition of fingerspelling sequences in polish sign
language using point clouds obtained from depth im-
ages. Sensors, 19(5):1078.
Wen, F., Zhang, Z., He, T., and Lee, C. (2021). Ai enabled
sign language recognition and vr space bidirectional
communication using triboelectric smart glove. Na-
ture communications, 12(1):5378.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
208