
sen, J., Bronstein, B., Bui, A., Bushey, M., Butler,
H., Castagna, V., Camacho, N., Chan, E., Citera, D.,
Clucas, J., Cohen, S., Dufek, S., Eaves, M., Fradera,
B., Gardner, J., Grant-Villegas, N., Green, G., Gre-
gory, C., Hart, E., Harris, S., Horton, M., Kahn,
D., Kabotyanski, K., Karmel, B., Kelly, S. P., Klein-
man, K., Koo, B., Kramer, E., Lennon, E., Lord, C.,
Mantello, G., Margolis, A., Merikangas, K. R., Mil-
ham, J., Minniti, G., Neuhaus, R., Levine, A., Os-
man, Y., Parra, L. C., Pugh, K. R., Racanello, A.,
Restrepo, A., Saltzman, T., Septimus, B., Tobe, R.,
Waltz, R., Williams, A., Yeo, A., Castellanos, F. X.,
Klein, A., Paus, T., Leventhal, B. L., Craddock, R. C.,
Koplewicz, H. S., and Milham, M. P. (2017). An
open resource for transdiagnostic research in pediatric
mental health and learning disorders. Scientific Data,
4(1):170181.
Ali, N. (2020). Autism spectrum disorder classification on
electroencephalogram signal using deep learning al-
gorithm. IAES International Journal of Artificial In-
telligence (IJ-AI), 9:91.
Bi, X.-A., Liu, Y., Jiang, Q., Shu, Q., Sun, Q., and Dai,
J. (2018). The diagnosis of autism spectrum disorder
based on the random neural network cluster. Frontiers
in human neuroscience, 12:257.
Brown, C. J., Kawahara, J., and Hamarneh, G. (2018).
Connectome priors in deep neural networks to predict
autism. In 2018 IEEE 15th international symposium
on biomedical imaging (ISBI 2018), pages 110–113.
IEEE.
Cao, X. and Cao, J. (2023). Commentary: Machine learning
for autism spectrum disorder diagnosis–challenges
and opportunities–a commentary on schulte-rüther et
al.(2022). Journal of Child Psychology and Psychia-
try, 64(6):966–967.
Chen, H., Duan, X., Liu, F., Lu, F., Ma, X., Zhang,
Y., Uddin, L. Q., and Chen, H. (2016). Mul-
tivariate classification of autism spectrum disor-
der using frequency-specific resting-state functional
connectivity—a multi-center study. Progress in
Neuro-Psychopharmacology and Biological Psychia-
try, 64:1–9.
Chien, J.-T. (2018). Source separation and machine learn-
ing. Academic Press.
Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E.,
Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopy-
ris, K., Marchetti, M., et al. (2019). Skin lesion anal-
ysis toward melanoma detection 2018: A challenge
hosted by the international skin imaging collaboration
(isic). arXiv preprint arXiv:1902.03368.
Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans,
A., Jakab, A., Khundrakpam, B. S., Lewis, J. D., Li,
Q., Milham, M., et al. (2013). The neuro bureau pre-
processing initiative: open sharing of preprocessed
neuroimaging data and derivatives. Frontiers in Neu-
roinformatics, 7(27):5.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castel-
lanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M.,
Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte,
S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gal-
lagher, L., Kennedy, D. P., Keown, C. L., Keysers,
C., Lainhart, J. E., Lord, C., Luna, B., Menon, V.,
Minshew, N. J., Monk, C. S., Mueller, S., Müller, R.-
A., Nebel, M. B., Nigg, J. T., O’Hearn, K., Pelphrey,
K. A., Peltier, S. J., Rudie, J. D., Sunaert, S., Thioux,
M., Tyszka, J. M., Uddin, L. Q., Verhoeven, J. S.,
Wenderoth, N., Wiggins, J. L., Mostofsky, S. H., and
Milham, M. P. (2014). The autism brain imaging data
exchange: towards a large-scale evaluation of the in-
trinsic brain architecture in autism. Mol. Psychiatry,
19(6):659–667.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.
Durstewitz, D., Koppe, G., and Meyer-Lindenberg, A.
(2019). Deep neural networks in psychiatry. Mol. Psy-
chiatry, 24(11):1583–1598.
Dvornek, N. C., Ventola, P., and Duncan, J. S. (2018).
Combining phenotypic and resting-state fmri data
for autism classification with recurrent neural net-
works. In 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), pages 725–728.
IEEE.
Dvornek, N. C., Ventola, P., Pelphrey, K. A., and Dun-
can, J. S. (2017a). Identifying autism from resting-
state fmri using long short-term memory networks.
In Machine Learning in Medical Imaging: 8th Inter-
national Workshop, MLMI 2017, Held in Conjunc-
tion with MICCAI 2017, Quebec City, QC, Canada,
September 10, 2017, Proceedings 8, pages 362–370.
Springer.
Dvornek, N. C., Ventola, P., Pelphrey, K. A., and Duncan,
J. S. (2017b). Identifying autism from resting-state
fMRI using long short-term memory networks. In Ma-
chine Learning in Medical Imaging, Lecture notes in
computer science, pages 362–370. Springer Interna-
tional Publishing, Cham.
Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W., and
Bandettini, P. A. (2021). How to interpret resting-
state fMRI: Ask your participants. J. Neurosci.,
41(6):1130–1141.
Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin,
A., Jégou, H., and Douze, M. (2021). Levit: a vision
transformer in convnet’s clothing for faster inference.
In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 12259–12269.
Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson,
C. A., and Lu, L. J. (2017). Diagnosing autism spec-
trum disorder from brain resting-state functional con-
nectivity patterns using a deep neural network with a
novel feature selection method. Frontiers in neuro-
science, 11:460.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
HEALTHINF 2025 - 18th International Conference on Health Informatics
62