
dicates the potential of the proposed methodology to
be a reliable medical assistance tool by providing a
primary diagnosis using only one type of data.
COMPLIANCE WITH ETHICAL
STANDARDS
This study was registered by the Clinical Research
and Innovation Delegation of the University Hospital
Center of Besanc¸on under the number 2023/796.
ACKNOWLEDGMENT
This work has been achieved in the frame of the
EIPHI Graduate school (contract “ANR-17-EURE-
0002”).
REFERENCES
Bhardwaj, N., Kaur, G., and Singh, P. K. (2018). A system-
atic review on image enhancement techniques. Sen-
sors and Image Processing: Proceedings of CSI 2015,
pages 227–235.
Bilezikian, J., Cusano, N., Khan, A., Liu, J., Marcocci,
C., and Bandeira, F. (2016). Primary hyperparathy-
roidism. nature reviews disease primers. 2016; 2:
16033.
Boukhennoufa, O., Comas, L., Nicod, J.-M., Ungureanu,
C., Zerhouni, N., and Boulahdour, H. (2024). Au-
tomatic detection of parathyroid glands in nuclear
medicine. In 2024 IEEE International Symposium on
Biomedical Imaging (ISBI), pages 1–4. IEEE.
Buades, A., Coll, B., and Morel, J.-M. (2011). Non-local
means denoising. Image Processing On Line, 1:208–
212.
Khan, A., Hanley, D., Rizzoli, R., Bollerslev, J., Young,
J., Rejnmark, L., Thakker, R., D’amour, P., Paul, T.,
Van Uum, S., et al. (2017). Primary hyperparathy-
roidism: review and recommendations on evaluation,
diagnosis, and management. a canadian and interna-
tional consensus. Osteoporosis International, 28:1–
19.
Kim, K., Lee, M.-H., and Lee, Y. (2020). Investigation of a
blind-deconvolution framework after noise reduction
using a gamma camera in nuclear medicine imaging.
Nuclear Engineering and Technology, 52(11):2594–
2600.
Lee, S.-W., Shim, S. R., Jeong, S. Y., and Kim, S.-J. (2021).
Direct comparison of preoperative imaging modali-
ties for localization of primary hyperparathyroidism:
a systematic review and network meta-analysis. JAMA
Otolaryngology–Head & Neck Surgery, 147(8):692–
706.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Nieciecki, M., Cacko, M., and Kr
´
olicki, L. (2015). The
role of ultrasound and nuclear medicine methods in
the preoperative diagnostics of primary hyperparathy-
roidism. Journal of Ultrasonography, 15(63):398–
409.
¨
Oks
¨
uz, M.
¨
O., Dittmann, H., Wicke, C., M
¨
ussig, K., Bares,
R., Pfannenberg, C., and Eschmann, S. M. (2011). Ac-
curacy of parathyroid imaging: a comparison of pla-
nar scintigraphy, spect, spect-ct, and c-11 methion-
ine pet for the detection of parathyroid adenomas and
glandular hyperplasia. DIR, 17(4):297.
Petranovi
´
c Ov
ˇ
cari
ˇ
cek, P., Giovanella, L., Carri
´
o Gasset, I.,
Hindi
´
e, E., Huellner, M. W., Luster, M., Piccardo, A.,
Weber, T., Talbot, J.-N., and Verburg, F. A. (2021).
The eanm practice guidelines for parathyroid imaging.
EJNMMI, 48:2801–2822.
Samaras, A.-D., Tsimara, M., Voidila, S., Papandrianos, N.,
Zampakis, P., Moustakidis, S., Papageorgiou, E., and
Kalogeropoulou, C. (2024). Explainable classification
of patients with primary hyperparathyroidism using
highly imbalanced clinical data derived from imaging
and biochemical procedures. AS, 14(5):2171.
Sandqvist, P., Sundin, A., Nilsson, I.-L., Gryb
¨
ack, P., and
Sanchez-Crespo, A. (2022). Primary hyperparathy-
roidism, a machine learning approach to identify
multiglandular disease in patients with a single ade-
noma found at preoperative sestamibi-spect/ct. Euro-
pean Journal of Endocrinology, 187(2):257–263.
Sung, J. Y. (2015). Parathyroid ultrasonography: the
evolving role of the radiologist. Ultrasonography,
34(4):268.
Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288.
Tlili, G., Mesguich, C., Gaye, D., Tabarin, A., Haissa-
guerre, M., and Hindi
´
e, E. (2023). Dual-tracer 99mtc-
sestamibi/123i imaging in primary hyperparathy-
roidism. QJNMMI.
Walker, M. D. and Silverberg, S. J. (2018). Primary hy-
perparathyroidism. Nature Reviews Endocrinology,
14(2):115–125.
Yoshida, A., Ueda, D., Higashiyama, S., Katayama, Y.,
Matsumoto, T., Yamanaga, T., Miki, Y., and Kawabe,
J. (2022). Deep learning-based detection of parathy-
roid adenoma by 99mtc-mibi scintigraphy in patients
with primary hyperparathyroidism. Annals of Nuclear
Medicine, 36(5):468–478.
Zhang, K., Li, Y., Liang, J., Cao, J., Zhang, Y., Tang, H.,
Fan, D.-P., Timofte, R., and Gool, L. V. (2023). Practi-
cal blind image denoising via swin-conv-unet and data
synthesis. Machine Intelligence Research, 20(6):822–
836.
Zhang, Z., Zhang, Q., Gao, Z., Zhang, R., Shutova, E.,
Zhou, S., and Zhang, S. (2024). Gradient-based pa-
rameter selection for efficient fine-tuning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 28566–28577.
BIOIMAGING 2025 - 12th International Conference on Bioimaging
310