were not considered. However, enhancing the clinical
management of meningiomas by constructing an
interpretable machine learning model that predicts
meningioma grade was the main objective of this
study.
5 CONCLUSIONS
Utilising clinical and radiomics features, the SVM
ML model, offers a reliable approach for preoperative
prediction of meningioma grade. By identifying
discriminative radiomic features and their
interactions with clinical features, SHAP supports the
potential for the enhanced clinical adoption of such
models. Future research should explore larger
datasets and diverse patients to validate and refine
these findings, further enhancing clinical adoption.
REFERENCES
An, Chansik, Yae Won Park, Sung Soo Ahn, Kyunghwa
Han, Hwiyoung Kim, and Seung-Koo Lee. 2021.
'Radiomics machine learning study with a small sample
size: Single random training-test set split may lead to
unreliable results', PloS one, 16: e0256152.
Carré, Alexandre, Guillaume Klausner, Myriam Edjlali,
Marvin Lerousseau, Jade Briend-Diop, Roger Sun,
Samy Ammari, Sylvain Reuzé, Emilie Alvarez Andres,
and Théo Estienne. 2020. 'Standardization of brain MR
images across machines and protocols: bridging the gap
for MRI-based radiomics', Scientific reports, 10:
12340.
Chu, Hairui, Xiaoqi Lin, Jian He, Peipei Pang, Bing Fan,
Pinggui Lei, Dongchuang Guo, and Chenglong Ye.
2021. 'Value of MRI radiomics based on enhanced
T1WI images in prediction of meningiomas grade',
Academic radiology, 28: 687-93.
Clark, K., B. Vendt, K. Smith, J. Freymann, J. Kirby, P.
Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle,
L. Tarbox, and F. Prior. 2013. 'The Cancer Imaging
Archive (TCIA): maintaining and operating a public
information repository', J Digit Imaging, 26: 1045-57.
Duan, CF, N Li, Y Li, F Liu, JC Wang, XJ Liu, and WJ Xu.
2022. 'Comparison of different radiomic models based
on enhanced T1-weighted images to predict the
meningioma grade', Clinical Radiology, 77: e302-e07.
Duan, Chongfeng, Xiaoming Zhou, Jiachen Wang, Nan Li,
Fang Liu, Song Gao, Xuejun Liu, and Wenjian Xu.
2022. 'A radiomics nomogram for predicting the
meningioma grade based on enhanced T 1WI images',
The British Journal of Radiology, 95: 20220141.
Fountain, Daniel M., Adam M. H. Young, and Thomas
Santarius. 2020. 'Chapter 24 - Malignant meningiomas.'
in Michael W. McDermott (ed.), Handbook of Clinical
Neurology (Elsevier).
Gorgolewski, Krzysztof J, Tibor Auer, Vince D Calhoun, R
Cameron Craddock, Samir Das, Eugene P Duff,
Guillaume Flandin, Satrajit S Ghosh, Tristan Glatard,
and Yaroslav O Halchenko. 2016. 'The brain imaging
data structure, a format for organizing and describing
outputs of neuroimaging experiments', Scientific data,
3: 1-9.
Halchenko, Y, M Goncalves, and MVDO Castello. 2020.
'nipy/heudiconv v0. 9.0', Published online December, 23.
Han, Yuxuan, Tianzuo Wang, Peng Wu, Hao Zhang,
Honghai Chen, and Chao Yang. 2021. 'Meningiomas:
Preoperative predictive histopathological grading based
on radiomics of MRI', Magnetic Resonance Imaging,
77: 36-43.
Herrgott, Grayson A, James M Snyder, Ruicong She,
Tathiane M Malta, Thais S Sabedot, Ian Y Lee, Jacob
Pawloski, Guilherme G Podolsky-Gondim, Karam P
Asmaro, and Jiaqi Zhang. 2023. 'Detection of
diagnostic and prognostic methylation-based signatures
in liquid biopsy specimens from patients with
meningiomas', Nature Communications, 14: 5669.
Hu, Jianping, Yijing Zhao, Mengcheng Li, Jianyi Liu, Feng
Wang, Qiang Weng, Xingfu Wang, and Dairong Cao.
2020. 'Machine learning-based radiomics analysis in
predicting the meningioma grade using multiparametric
MRI', European journal of radiology, 131: 109251.
Islim, Abdurrahman I, Midhun Mohan, Richard DC Moon,
Nitika Rathi, Ruwanthi Kolamunnage-Dona, Anna
Crofton, Brian J Haylock, Samantha J Mills, Andrew R
Brodbelt, and Michael D Jenkinson. 2020. 'Treatment
outcomes of incidental intracranial meningiomas:
results from the IMPACT cohort',
World Neurosurgery,
138: e725-e35.
Jun, Yohan, Yae Won Park, Hyungseob Shin, Yejee Shin,
Jeong Ryong Lee, Kyunghwa Han, Sung Soo Ahn,
Soo Mee Lim, Dosik Hwang, and Seung-Koo Lee.
2023. 'Intelligent noninvasive meningioma grading
with a fully automatic segmentation using
interpretable multiparametric deep learning',
European radiology: 1-10.
Lambin, Philippe, Emmanuel Rios-Velazquez, Ralph
Leijenaar, Sara Carvalho, Ruud GPM Van Stiphout,
Patrick Granton, Catharina ML Zegers, Robert Gillies,
Ronald Boellard, and André Dekker. 2012. 'Radiomics:
extracting more information from medical images using
advanced feature analysis', European journal of cancer,
48: 441-46.
Langs, G, S Röhrich, J Hofmanninger, F Prayer, J Pan, C
Herold, and H Prosch. 2018. 'Machine learning: from
radiomics to discovery and routine', Der Radiologe, 58: 1.
Louis, David N, Arie Perry, Pieter Wesseling, Daniel J Brat,
Ian A Cree, Dominique Figarella-Branger, Cynthia
Hawkins, HK Ng, Stefan M Pfister, and Guido
Reifenberger. 2021. 'The 2021 WHO classification of
tumors of the central nervous system: a summary',
Neuro-oncology, 23: 1231-51.
Low, Justin T, Quinn T Ostrom, Gino Cioffi, Corey Neff,
Kristin A Waite, Carol Kruchko, and Jill S Barnholtz-
Sloan. 2022. 'Primary brain and other central nervous
system tumors in the United States (2014-2018): A