
recommender systems: A systematic review and fu-
ture directions. arXiv preprint arXiv:2109.03540.
Gu, S., Holly, E., Lillicrap, T. P., and Levine, S. (2016).
Deep reinforcement learning for robotic manipulation.
arXiv preprint arXiv:1610.00633, 1:1.
Huang, S. H., Bhatia, K., Abbeel, P., and Dragan, A. D.
(2018). Establishing appropriate trust via critical
states. In 2018 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 3929–
3936. IEEE.
Hubbs, C. D., Li, C., Sahinidis, N. V., Grossmann, I. E., and
Wassick, J. M. (2020). A deep reinforcement learning
approach for chemical production scheduling. Com-
puters & Chemical Engineering, 141:106982.
Hwang, M., Jiang, W.-C., and Chen, Y.-J. (2022). A
critical state identification approach to inverse rein-
forcement learning for autonomous systems. Interna-
tional Journal of Machine Learning and Cybernetics,
13(5):1409–1423.
Ju, S. (2019). Identify critical pedagogical decisions
through adversarial deep reinforcement learning. In
In: Proceedings of the 12th International Conference
on Educational Data Mining (EDM 2019).
Ju, S., Zhou, G., Abdelshiheed, M., Barnes, T., and Chi,
M. (2021). Evaluating critical reinforcement learning
framework in the field. In International conference
on artificial intelligence in education, pages 215–227.
Springer.
Ju, S., Zhou, G., Barnes, T., and Chi, M. (2020). Pick the
moment: Identifying critical pedagogical decisions
using long-short term rewards. International Educa-
tional Data Mining Society.
Karino, I., Ohmura, Y., and Kuniyoshi, Y. (2020). Iden-
tifying critical states by the action-based variance of
expected return. In International Conference on Arti-
ficial Neural Networks, pages 366–378. Springer.
Kumar, R. P., Kumar, I. N., Sivasankaran, S., Vamsi, A. M.,
and Vijayaraghavan, V. (2021). Critical state detection
for adversarial attacks in deep reinforcement learn-
ing. In 2021 20th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages
1761–1766. IEEE.
Leurent, E. (2018). An environment for autonomous
driving decision-making. https://github.com/eleurent/
highway-env.
Li, G., Li, S., Li, S., Qin, Y., Cao, D., Qu, X., and
Cheng, B. (2020). Deep reinforcement learning en-
abled Decision-Making for autonomous driving at in-
tersections. Automotive Innovation, 3(4):374–385.
Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu, M.-
Y., and Sun, M. (2017). Tactics of adversarial attack
on deep reinforcement learning agents. arXiv preprint
arXiv:1703.06748.
Liu, H., Zhuge, M., Li, B., Wang, Y., Faccio, F., Ghanem,
B., and Schmidhuber, J. (2023). Learning to identify
critical states for reinforcement learning from videos.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 1955–1965.
Mnih, V. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.
Panzer, M. and Bender, B. (2022). Deep reinforcement
learning in production systems: a systematic literature
review. International Journal of Production Research,
60(13):4316–4341.
Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. (2021). Stable-baselines3: Reli-
able reinforcement learning implementations. Journal
of Machine Learning Research, 22(268):1–8.
Ravi Kiran, B., Sobh, I., Talpaert, V., Mannion, P., Al Sal-
lab, A. A., Yogamani, S., and P
´
erez, P. (2022). Deep
reinforcement learning for autonomous driving: A
survey. IEEE Trans. Intell. Transp. Syst., 23(6):4909–
4926.
Santorsola, A., Maci, A., Delvecchio, P., and Coscia, A.
(2023). A reinforcement-learning-based agent to dis-
cover safety-critical states in smart grid environments.
In 2023 3rd International Conference on Electrical,
Computer, Communications and Mechatronics Engi-
neering (ICECCME). IEEE.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., et al. (2017). Mastering chess and shogi
by self-play with a general reinforcement learning al-
gorithm. arXiv preprint arXiv:1712.01815.
Spielberg, Y. and Azaria, A. (2019). The concept of crit-
icality in reinforcement learning. In 2019 IEEE 31st
International Conference on Tools with Artificial In-
telligence (ICTAI), pages 251–258. IEEE.
Spielberg, Y. and Azaria, A. (2022). Criticality-based ad-
vice in reinforcement learning. In Proceedings of the
Annual Meeting of the Cognitive Science Society, vol-
ume 44.
Westhofen, L., Neurohr, C., Koopmann, T., Butz, M.,
Sch
¨
utt, B., Utesch, F., Neurohr, B., Gutenkunst, C.,
and B
¨
ode, E. (2023). Criticality metrics for automated
driving: A review and suitability analysis of the state
of the art. Archives of Computational Methods in En-
gineering, 30(1):1–35.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
224