
REFERENCES
Ankerst, M., Breunig, M. M., Kriegel, H. P., and Sander,
J. (1999). OPTICS: Ordering Points to Identify the
Clustering Structure. SIGMOD Record (ACM Special
Interest Group on Management of Data), 28(2).
Binta Islam, S., Valles, D., Hibbitts, T. J., Ryberg, W. A.,
Walkup, D. K., and Forstner, M. R. (2023). Animal
Species Recognition with Deep Convolutional Neural
Networks from Ecological Camera Trap Images. Ani-
mals, 13(9).
Bjerge, K., Bodesheim, P., and Karstoft, H. (2024). Few-
shot learning with novelty detection. In Fred, A.,
Hadjali, A., Gusikhin, O., and Sansone, C., editors,
Deep Learning Theory and Applications, pages 340–
363, Cham. Springer Nature Switzerland.
Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M., Høye,
T. T., Dyrmann, M., and Karstoft, H. (2023). Hier-
archical classification of insects with multitask learn-
ing and anomaly detection. Ecological Informatics,
77:102278.
Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., and Cui, P.
(2020). Structural Deep Clustering Network. In The
Web Conference 2020 - Proceedings of the World Wide
Web Conference, WWW 2020.
Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., and
Denzler, J. (2013). Kernel null space methods for nov-
elty detection. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition.
B
¨
ohlke, J., Korsch, D., Bodesheim, P., and Denzler, J.
(2021). Exploiting Web Images for Moth Species
Classification. In Lecture Notes in Informatics (LNI),
Proceedings - Series of the Gesellschaft fur Informatik
(GI), volume P-314.
Boudiaf, M., Masud, Z. I., Rony, J., Dolz, J., Piantanida,
P., and Ayed, I. B. (2020). Transductive informa-
tion maximization for few-shot learning. In Advances
in Neural Information Processing Systems, volume
2020-December.
Cai, J., Hao, J., Yang, H., Zhao, X., and Yang, Y. (2023).
A review on semi-supervised clustering. Information
Sciences, 632.
Chen, W. Y., Wang, Y. C. F., Liu, Y. C., Kira, Z., and Huang,
J. B. (2019). A closer look at few-shot classification.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019.
Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learn-
ing a similarity metric discriminatively, with appli-
cation to face verification. In Proceedings - 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2005, volume I.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum Likelihood from Incomplete Data Via the
EM Algorithm . Journal of the Royal Statistical Soci-
ety Series B: Statistical Methodology, 39(1).
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16X16 words: Trans-
formers for image recognition at scale. In ICLR 2021
- 9th International Conference on Learning Represen-
tations.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A
Density-Based Algorithm for Discovering Clusters A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proceedings -
2nd International Conference on Knowledge Discov-
ery and Data Mining, KDD 1996.
Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I.,
Zomaya, A. Y., Foufou, S., and Bouras, A. (2014).
A survey of clustering algorithms for big data: Tax-
onomy and empirical analysis. IEEE Transactions on
Emerging Topics in Computing, 2(3).
Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic
meta-learning for fast adaptation of deep networks. In
34th International Conference on Machine Learning,
ICML 2017, volume 3.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2016-Decem.
Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A.
(2022). Meta-Learning in Neural Networks: A Sur-
vey. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(9).
Huang, H., Wang, C., Wei, X., and Zhou, Y. (2024).
Deep image clustering: A survey. Neurocomputing,
599:128101.
Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of Classification, 2(1).
Jain, A. K. (2010). Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8).
Jiang, H., Huang, Y., and Li, Q. (2022). Spectral clus-
tering of single cells using Siamese nerual network
combined with improved affinity matrix. Briefings in
Bioinformatics, 23(3).
Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y. Z., and
Hospedales, T. (2019). Episodic training for domain
generalization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, volume 2019-
October.
Liu, J., Song, L., and Qin, Y. (2020). Prototype Rectifica-
tion for Few-Shot Learning. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 12346 LNCS:741–756.
Lu, Y., Li, H., Li, Y., Lin, Y., and Peng, X. (2024). A survey
on deep clustering: from the prior perspective. Vici-
nagearth, 1(1):1–17.
Macqueen, J. (1967). Some methods for classification and
analysis of multivarite observation. Preceeding of the
5th Berkeley symposium on mathematical statistics
and probability, Berkeley. University of california
press, 281.
McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: Hi-
erarchical density based clustering. The Journal of
Open Source Software, 2(11).
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
296