
from Surveys to Task Taxonomies . Computer Graph-
ics Forum, 42(6):e14794.
Filipov, V., Ceneda, D., Archambault, D., and Arleo, A.
(2024). TimeLighting: Guided Exploration of 2D
Temporal Network Projections . IEEE Transactions
on Visualization & Computer Graphics, (01):1–13.
Hayashi, A., Matsubayashi, T., Hoshide, T., and Uchiyama,
T. (2013). Initial Positioning Method for Online and
Real-Time Dynamic Graph Drawing of Time Varying
Data . In International Conference on Information Vi-
sualisation, pages 435–444.
Hurtienne, J., Maas, F., Carolus, A., Reinhardt, D., Baur, C.,
and Wienrich, C. (2020). Move amp;Find: The Value
of Kinaesthetic Experience in a Casual Data Repre-
sentation . IEEE Computer Graphics and Applica-
tions, 40(6):61–75.
Jae-wook Ahn, Plaisant, C., and Shneiderman, B. (2014).
A Task Taxonomy for Network Evolution Analysis.
IEEE Transactions on Visualization and Computer
Graphics, 20(3):365–376.
Jansen, Y. and Dragicevic, P. (2013). An interaction
model for visualizations beyond the desktop. IEEE
Transactions on Visualization and Computer Graph-
ics, 19(12):2396–2405.
Jansen, Y., Dragicevic, P., and Fekete, J. D. (2013). Evalu-
ating the efficiency of physical visualizations. Confer-
ence on Human Factors in Computing Systems - Pro-
ceedings, pages 2593–2602.
Jansen, Y., Dragicevic, P., Isenberg, P., Alexander, J.,
Karnik, A., Kildal, J., Subramanian, S., and Horn-
bæk, K. (2015). Opportunities and Challenges for
Data Physicalization. In Proceedings of the 33rd An-
nual ACM Conference on Human Factors in Comput-
ing Systems, CHI ’15, pages 3227–3236.
Kotlarek, J., Kwon, O.-H., Ma, K.-L., Eades, P., Kerren,
A., Klein, K., and Schreiber, F. (2020). A Study
of Mental Maps in Immersive Network Visualization.
In 2020 IEEE Pacific Visualization Symposium (Paci-
ficVis), pages 1–10.
Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., and Henry,
N. (2006). Task taxonomy for graph visualization. In
AVI workshop on BEyond time and errors novel eval-
uation methods for information visualization, page 1.
McGookin, D., Robertson, E., and Brewster, S. (2010).
Clutching at straws: using tangible interaction to pro-
vide non-visual access to graphs . In Proceedings of
the SIGCHI conference on human factors in comput-
ing systems, pages 1715–1724.
McGuffin, M. J., Servera, R., and Forest, M. (2023). Path
Tracing in 2D, 3D, and Physicalized Networks. IEEE
Transactions on Visualization and Computer Graph-
ics, pages 1–14.
Oelke, D., Kokkinakis, D., and Keim, D. A. (2013). Fin-
gerprint Matrices: Uncovering the dynamics of social
networks in prose literature . Computer Graphics Fo-
rum, 32(3pt4):371–380.
Oh-Hyun Kwon, Kwon, O.-H., Chris Muelder, Muelder, C.,
Kyungwon Lee, Lee, K., Kwan-Liu Ma, and Ma, K.-
L. (2016). A Study of Layout, Rendering, and In-
teraction Methods for Immersive Graph Visualization
. IEEE Transactions on Visualization and Computer
Graphics, 22(7):1802–1815.
O’Malley, C. and Fraser, D. S. (2004). Literature Review in
Learning with Tangible Technologies.
Pahr, D., Ehlers, H., Wu, H.-Y., Waldner, M., and Raidou,
R. (2024). Investigating the Effect of Operation Mode
and Manifestation on Physicalizations of Dynamic
Processes . Computer Graphics Forum, 43(3):e15106.
Pahr, D., Piovarci, M., Wu, H.-Y., and Raidou, R. G. (5555).
Squishicalization: Exploring Elastic Volume Physi-
calization . IEEE Transactions on Visualization &
Computer Graphics, (01):1–14.
Pahr, D., Wu, H.-Y., and Raidou, R. G. (2021). Vologram:
An Educational Holographic Sculpture for Volumetric
Medical Data Physicalization . In VCBM 2021: 11th
Eurographics Workshop on Visual Computing for Bi-
ology and Medicine, Paris, France, 22-24 September
2021, pages 19–23.
Raidou, R. G., Gr
¨
oller, M. E., and Wu, H.-Y. (2020). Slice
and Dice: A Physicalization Workflow for Anatomical
Edutainment. Computer Graphics Forum, 39(7):623–
634.
Rohrschneider, M., Ullrich, A., Kerren, A., Stadler, P. F.,
and Scheuermann, G. (2010). Visual Network Analy-
sis of Dynamic Metabolic Pathways. In Advances in
Visual Computing, pages 316–327.
Rufiange, S. and Melanc¸on, G. (2014). AniMatrix: A
Matrix-Based Visualization of Software Evolution. In
2014 Second IEEE Working Conference on Software
Visualization, pages 137–146.
Schindler, M., Korpitsch, T., Raidou, R. G., and Wu, H.-
Y. (2022). Nested Papercrafts for Anatomical and
Biological Edutainment. Computer Graphics Forum,
41(3):541–553.
Schindler, M., Wu, H. Y., and Raidou, R. G. (2020). The
Anatomical Edutainer. In Proceedings - 2020 IEEE
Visualization Conference, VIS 2020, pages 1–5.
Shi, L., Wang, C., Wen, Z., Qu, H., Lin, C., and Liao, Q.
(2015). 1.5D Egocentric Dynamic Network Visual-
ization. IEEE Transactions on Visualization and Com-
puter Graphics, 21(5):624–637.
Simonetto, P., Archambault, D., and Kobourov, S. G.
(2018). Event-Based Dynamic Graph Visualisation.
IEEE Transactions on Visualization and Computer
Graphics, pages 1–1.
Sorger, J., Waldner, M., Knecht, W., and Arleo, A. (2019).
Immersive Analytics of Large Dynamic Networks via
Overview and Detail Navigation . International Con-
ference on Artificial Intelligence and Virtual Reality,
pages 144–151.
Stoppel, S. and Bruckner, S. (2017). Vol2velle: Printable
Interactive Volume Visualization. IEEE Transactions
on Visualization and Computer Graphics, 23(1):861–
870.
Stusak, S., Schwarz, J., and Butz, A. (2015). Evaluating the
memorability of physical visualizations. Conference
on Human Factors in Computing Systems - Proceed-
ings, 2015-April:3247–3250.
Vehlow, C., Burch, M., Schmauder, H., and Weiskopf, D.
(2013). Radial Layered Matrix Visualization of Dy-
namic Graphs. In 2013 17th International Conference
on Information Visualisation, pages 51–58.
IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications
866