
Dhelim, S., Aung, N., Bouras, M. A., Ning, H., and Cam-
bria, E. (2022). A survey on personality-aware rec-
ommendation systems. Artificial Intelligence Review,
pages 1–46.
Dovgopol, R. and Nohelty, M. (2015). Twitter hash tag rec-
ommendation.
Graus, M. and Ferwerda, B. (2019). Theory-grounded user
modeling for personalized hci. Personalized human-
computer interaction.
Jerry, C., Shankar, K., and Kiranmai, E. S. (2024). Harm
mitigation in recommender systems under user pref-
erence dynamics. In 2024 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 255–265.
Kazienko, P. and Kolodziejski, P. (2006). Personalized inte-
gration of recommendation methods for e-commerce.
Int. J. Comput. Sci. Appl., 3(3):12–26.
Ko, H., Lee, S., Park, Y., and Choi, A. (2022). A survey
of recommendation systems: recommendation mod-
els, techniques, and application fields. Electronics.,
11(1):141.
Li, W., Li, T., and Berahmand, K. (2023). An effective link
prediction method in multiplex social networks us-
ing local random walk towards dependable pathways.
Journal of Combinatorial Optimization., 45(1):31.
Li, Y., Liu, J., and Ren, J. (2019). Social recommendation
model based on user interaction in complex social net-
works. PloS one, 14(7):e0218957.
Liu, H., Salem, B., and Rauterberg, M. (2009). A survey
on user profile modeling for personalized service de-
livery systems. In Proceeding of IADIS International
Conference on Interfaces and Human Computer Inter-
action, pages 45–51.
Martijn, M.and Conati, C. and Verbert, K. (2022). Know-
ing me, knowing you”: personalized explanations for
a music recommender system. User Modeling and
User-Adapted Interaction., 32(1):215–252.
Middleton, S. E.and Shadbolt, N. R. and De Roure, D. C.
(2004). Ontological user profiling in recommender
systems. ACM Transactions on Information Systems
(TOIS),, 22(1):54–88.
Minsung, H., Sojung, A., Rajendra, A., D, C., and J, J. J.
(2024). Cross-cultural contextualisation for recom-
mender systems. Journal of Ambient Intelligence and
Humanized Computing, pages 1–12.
Qian, F., Qin, K., Chen, H., Chen, J., Zhao, S., Zhou, P., and
Zhang, Y. (2023). Utilizing the influence of multiple
potential factors for social recommendation. Knowl-
edge and Information Systems, pages 1–20.
Rattanajitbanjong, N. and Maneeroj, S. (2009). Multi cri-
teria pseudo rating and multidimensional user profile
for movie recommender system. Paper presented at
the 32nd IEEE International Conference on Computer
Science and Information Technology, 596-601 August
2009.
Rebhi, W., Ben Yahia, N., and Bellamine, N. (2022). Life-
long and multirelational community detection to sup-
port social and collaborative e-learning. Computer
applications in engineering education, 30(5):1321–
1337.
Rebhi, W., Ben Yahia, N., and Bellamine Ben Saoud, N.
(2021). Stable communities detection method for tem-
poral multiplex graphs: Heterogeneous social network
case study. The Computer Journal, 64(3):418–431.
Rebhi, W., Yahia, N. B., and Saoud, N. B. B. (2017a).
Hybrid modeling approach for contextualized com-
munity detection in multilayer social network: Emer-
gency management case study. Procedia computer
science., 112:673–682.
Rebhi, W., Yahia, N. B., Saoud, N. B. B., and Hanachi, C.
(2017b). Towards contextualizing community detec-
tion in dynamic social networks. In Modeling and Us-
ing Context: 10th International and Interdisciplinary
Conference, CONTEXT 2017, Paris, France, June 20-
23, 2017, Proceedings 10, pages 324–336. Springer.
Roozbahani, Z., Rezaeenour, J., Katanforoush, A., and
Jalaly Bidgoly, A. (2022). Personalization of the col-
laborator recommendation system in multi-layer sci-
entific social networks: A case study of researchgate.
Expert Systems., 39(5):e12932.
Safoury, L. and Salah, A. (2013). Exploiting user demo-
graphic attributes for solving cold-start problem in
recommender system. Lecture Notes on Software En-
gineering., 1(3):303–307.
Sharma, M., Pant, B., and Singh, V. (2021). Demographic
profile building for cold start in recommender sys-
tem: a social media fusion approach. Materials To-
day: Proceedings., 46:11208–11212.
SKazienko, P., Musial, K., and Kajdanowicz, T. (2011).
Multidimensional social network in the social rec-
ommender system. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans.,
41(4):746–759.
Tahmasebi, F., Meghdadi, M., Ahmadian, S., and Valial-
lahi, K. (2021). A hybrid recommendation system
based on profile expansion technique to alleviate cold
start problem. Multimedia Tools and Applications.,
80(2):2339–2354.
Zainol, Z. and Nakata, K. (2010). Generic context ontology
modelling: A review and framework. In 2010 2nd In-
ternational Conference on Computer Technology and
Development, pages 126–130. IEEE.
Zhang, Z., Patra, B. G., Yaseen, A., Zhu, J., Sabharwal, R.,
Roberts, K., Cao, T., and Wu, H. (2023). Scholarly
recommendation systems: a literature survey. Knowl-
edge and Information Systems, pages 1–46.
Zimmermann, A., Lorenz, A., and Oppermann, R. (2007).
An operational definition of context. In Modeling
and Using Context: 6th International and Interdisci-
plinary Conference, CONTEXT 2007, Roskilde, Den-
mark, August 20-24, 2007. Proceedings 6, pages 558–
571. Springer.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
248