
system’s generalizability and effectiveness in multi-
lingual and multicultural contexts. This could easily
make the system more global and multidisciplinary,
making way for broader applications.
REFERENCES
Amer, M. A. B. (2021). Lexical density and readability of
secondary stage english textbooks in jordan. Interna-
tional Journal for Management and Modern Educa-
tion, 2(2):11–20.
Assamarqandi, A., Dewi, R., and Daddi, H. (2023). Analyz-
ing clarity and readability of text used in critical read-
ing comprehension classroom at english education de-
partment of unismuh makassar. Journal of Language
Testing and Assessment, 3(2):145–154.
Bagayatkar, A. and Ivin, B. (2024). Survey paper on ma-
chine learning and deep learning driven applications
using bayesian techniques. In 2024 IEEE 9th Inter-
national Conference for Convergence in Technology
(I2CT), pages 1–7. IEEE.
Cabitza, F., Campagner, A., and Basile, V. (2023). Toward
a perspectivist turn in ground truthing for predictive
computing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 6860–6868.
Cacace, J., Caccavale, R., Finzi, A., and Grieco, R. (2023).
Combining human guidance and structured task ex-
ecution during physical human–robot collaboration.
Journal of Intelligent Manufacturing, 34(7):3053–
3067.
Chiang, C.-H. and Lee, H.-y. (2023). Can large language
models be an alternative to human evaluations? arXiv
preprint arXiv:2305.01937.
Choi, J. H. (2024). Measuring clarity in legal text. ”U. Chi.
L. Rev.”, 91:1.
Desai, S. and Chin, J. (2023). Ok google, let’s learn: Using
voice user interfaces for informal self-regulated learn-
ing of health topics among younger and older adults.
In Proceedings of the 2023 CHI conference on human
factors in computing systems, pages 1–21.
Egele, R., Balaprakash, P., Guyon, I., Vishwanath, V., Xia,
F., Stevens, R., and Liu, Z. (2021). Agebo-tabular:
joint neural architecture and hyperparameter search
with autotuned data-parallel training for tabular data.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–14.
Gargiulo, F., Silvestri, S., and Ciampi, M. (2017). A big
data architecture for knowledge discovery in pubmed
articles. In 2017 IEEE Symposium on Computers and
Communications (ISCC), pages 82–87. IEEE.
Goldstein, H., Cutler, J. W., Dickstein, D., Pierce, B. C., and
Head, A. (2024). Property-based testing in practice.
In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1–13.
Gu, S. and Dodoo, R. N. A. (2020). The impact of firm per-
formance on annual report readability: evidence from
listed firms in ghana. Journal of Economics, Business,
& Accountancy Ventura, 22(3):444–454.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Huang, R., Li, M., Yang, D., Shi, J., Chang, X., Ye, Z.,
Wu, Y., Hong, Z., Huang, J., Liu, J., et al. (2024).
Audiogpt: Understanding and generating speech, mu-
sic, sound, and talking head. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 23802–23804.
Jim
´
enez-Luna, J., Grisoni, F., and Schneider, G. (2020).
Drug discovery with explainable artificial intelligence.
nat mach intell 2: 573–584.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Koivisto, J. and Hamari, J. (2019). The rise of motiva-
tional information systems: A review of gamification
research. International journal of information man-
agement, 45:191–210.
Kromidha, E. (2023). Identity mediation strategies for dig-
ital inclusion in entrepreneurial finance. International
Journal of Information Management, 72:102658.
Kulkarni, A. A., Niranjan, D. G., Saju, N., Shenoy, P. R.,
and Arya, A. (2024). Graph-based fault localization in
python projects with class-imbalanced learning. In In-
ternational Conference on Engineering Applications
of Neural Networks, pages 354–368. Springer.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.
Liao, K., Nie, L., Lin, C., Zheng, Z., and Zhao, Y. (2023).
Recrecnet: Rectangling rectified wide-angle images
by thin-plate spline model and dof-based curriculum
learning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10800–
10809.
Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. (2024). Lost in the mid-
dle: How language models use long contexts. Trans-
actions of the Association for Computational Linguis-
tics, 12:157–173.
Lo, K., Wang, L. L., Neumann, M., Kinney, R., and Weld,
D. S. (2019). S2orc: The semantic scholar open re-
search corpus. arXiv preprint arXiv:1911.02782.
Marvin, G., Hellen, N., Jjingo, D., and Nakatumba-
Nabende, J. (2023). Prompt engineering in large lan-
guage models. In International conference on data in-
telligence and cognitive informatics, pages 387–402.
Springer.
Matthews, N. and Folivi, F. (2023). Omit needless
words: Sentence length perception. PloS one,
18(2):e0282146.
McElfresh, D. C., Chan, L., Doyle, K., Sinnott-Armstrong,
W., Conitzer, V., Borg, J. S., and Dickerson, J. P.
(2021). Indecision modeling. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 5975–5983.
Mikk, J. (2008). Sentence length for revealing the cogni-
tive load reversal effect in text comprehension. Edu-
cational Studies, 34(2):119–127.
A Hybrid Approach for Assessing Research Text Clarity by Combining Semantic and Quantitative Measures
151