
ity metrics. In International Forum on Computer
Science-Technology and Applications, IFCSTA ’09,
pages 131–136. IEEE.
Hoque, E. (2023). NLP4Vis: Natural language
processing for information visualization –
half-day tutorial at IEEE VIS conference
2023. URL: https://nlp4vis.github.io/IEEEVis-
2023/index.html.
Hoque, E., Kavehzadeh, P., and Masry, A. (2022). Chart
question answering: State of the art and future direc-
tions. EG Computer Graphics Forum, 41(3):555–572.
Hsu, T.-Y., Giles, C. L., and Huang, T.-H. (2021). SciCap:
Generating captions for scientific figures. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pages 3258–3264. ACL.
Kantharaj, S., Leong, R. T., Lin, X., Masry, A., Thakkar,
M., Hoque, E., and Joty, S. (2022). Chart-to-Text:
A large-scale benchmark for chart summarization. In
Proc. 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4005–4023. ACL.
Kim, D. H., Hoque, E., and Agrawala, M. (2020). Answer-
ing questions about charts and generating visual ex-
planations. In Proc. Conference on Human Factors in
Computing Systems, CHI ’20. ACM.
Kim, Y., Lee, J., Kim, S., Park, J., and Kim, J. (2024). Un-
derstanding users’ dissatisfaction with ChatGPT re-
sponses: Types, resolving tactics, and the effect of
knowledge level. In Proc. 29th International Con-
ference on Intelligent User Interfaces, IUI ’24, pages
385–404. ACM.
Lanza, M. (2001). The Evolution Matrix: Recovering
software evolution using software visualization tech-
niques. In Proc. 4th International Workshop on Prin-
ciples of Software Evolution, IWPSE ’01, pages 37–
42. ACM.
Li, C., Zhang, M., Mei, Q., Kong, W., and Bendersky, M.
(2024). Learning to rewrite prompts for personalized
text generation. In Proc. ACM on Web Conference
2024, WWW ’24, pages 3367–3378. ACM.
Limberger, D., Scheibel, W., D
¨
ollner, J., and Trapp, M.
(2022). Visual variables and configuration of software
maps. Springer Journal of Visualization, 26:249–274.
Limberger, D., Trapp, M., and D
¨
ollner, J. (2020). Depicting
uncertainty in 2.5D treemaps. In Proc. 13th Interna-
tional Symposium on Visual Information Communica-
tion and Interaction, VINCI ’20, pages 28:1–2. ACM.
Liu, M. X., Liu, F., Fiannaca, A. J., Koo, T., Dixon, L.,
Terry, M., and Cai, C. J. (2024). “We Need Structured
Output”: Towards user-centered constraints on large
language model output. In Extended Abstracts of the
Conference on Human Factors in Computing Systems,
CHI EA ’24. ACM.
Maddigan, P. and Susnjak, T. (2023). Chat2VIS: Generating
data visualizations via natural language using Chat-
GPT, Codex and GPT-3 large language models. IEEE
Access, 11:45181–45193.
Malony, A., Hammerslag, D., and Jablonowski, D. (1991).
Traceview: a trace visualization tool. IEEE Software,
8(5):19–28.
Masry, A., Do, X. L., Tan, J. Q., Joty, S., and Hoque, E.
(2022). ChartQA: A benchmark for question answer-
ing about charts with visual and logical reasoning. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2263–2279. ACL.
Menzies, T. and Zimmermann, T. (2013). Software analyt-
ics: So what? IEEE Software, 30:31–37.
OpenAI (2024). OpenAI documentation.
URL: https://platform.openai.com/docs/overview.
Scheibel, W., Blum, J., Lauterbach, F., Atzberger, D., and
D
¨
ollner, J. (2024). Integrated visual software ana-
lytics on the GitHub platform. MDPI Computers,
13(2):33:1–23.
Scheibel, W., Limberger, D., and D
¨
ollner, J. (2020a). Sur-
vey of treemap layout algorithms. In Proc. 13th In-
ternational Symposium on Visual Information Com-
munication and Interaction, VINCI ’20, pages 1:1–9.
ACM.
Scheibel, W., Trapp, M., Limberger, D., and D
¨
ollner, J.
(2020b). A taxonomy of treemap visualization tech-
niques. In Proc. 15th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications – Volume 3: IVAPP, IVAPP
’20, pages 273–280. INSTICC, SciTePress.
Setlur, V., Battersby, S. E., Tory, M., Gossweiler, R., and
Chang, A. X. (2016). Eviza: A natural language in-
terface for visual analysis. In Proc. 29th Annual Sym-
posium on User Interface Software and Technology,
UIST ’16, pages 365–377. ACM.
Shen, L., Shen, E., Luo, Y., Yang, X., Hu, X., Zhang,
X., Tai, Z., and Wang, J. (2023). Towards natu-
ral language interfaces for data visualization: A sur-
vey. IEEE Transactions on Visualization and Com-
puter Graphics, 29(6):3121–3144.
Steinbr
¨
uckner, F. and Lewerentz, C. (2013). Understanding
software evolution with Software Cities. SAGE Infor-
mation Visualization, 12(2):200–216.
Subramonyam, H., Pea, R., Pondoc, C., Agrawala, M., and
Seifert, C. (2024). Bridging the gulf of envision-
ing: Cognitive challenges in prompt based interac-
tions with LLMs. In Proc. Conference on Human Fac-
tors in Computing Systems, CHI ’24. ACM.
Tian, Y., Cui, W., Deng, D., Yi, X., Yang, Y., Zhang, H.,
and Wu, Y. (2024). ChartGPT: Leveraging LLMs to
generate charts from abstract natural language. IEEE
Transactions on Visualization and Computer Graph-
ics. Early Access.
Voigt, H., Alacam, O., Meuschke, M., Lawonn, K., and
Zarrieß, S. (2022). The why and the how: A survey on
natural language interaction in visualization. In Proc.
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 348–374. ACL.
Wettel, R. and Lanza, M. (2007). Visualizing software sys-
tems as cities. In Proc. 4th International Workshop on
Visualizing Software for Understanding and Analysis,
VISSOFT, pages 92–99. IEEE.
Zamfirescu-Pereira, J., Wong, R. Y., Hartmann, B., and
Yang, Q. (2023). Why Johnny can’t prompt: How
non-AI experts try (and fail) to design LLM prompts.
In Proc. Conference on Human Factors in Computing
Systems, CHI ’23. ACM.
IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications
874