
REFERENCES
Alghatani, K., Ammar, N., Rezgui, A., and Shaban-Nejad,
A. (2021). Predicting intensive care unit length of stay
and mortality using patient vital signs: Machine learn-
ing model development and validation. JMIR Medical
Informatics, 9(5):e21347.
Bavdekar, S. B. (2013). Pediatric clinical trials. Perspec-
tives in clinical research, 4(1):89–99.
Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-
Marques, J., Gao, Y., Sani, L., Li, K. H., Parcollet, T.,
de Gusm
˜
ao, P. P. B., et al. (2022). Flower: A friendly
federated learning framework.
Chia, A. H. T., Khoo, M. S., Lim, A. Z., Ong, K. E., Sun, Y.,
Nguyen, B. P., Chua, M. C. H., and Pang, J. (2021).
Explainable machine learning prediction of icu mor-
tality. Informatics in Medicine Unlocked, 25:100674.
Georgoutsos, A. (2023). Analysis of deep federated learn-
ing on early prediction of icu mortality risk.
Holmstr
¨
om, L., Zhang, F. Z., Ouyang, D., Dey, D., Slomka,
P. J., and Chugh, S. S. (2023). Artificial intelligence in
ventricular arrhythmias and sudden death. Arrhythmia
& Electrophysiology Review, 12.
Iwase, S., Nakada, T.-a., Shimada, T., Oami, T., Shi-
mazui, T., Takahashi, N., Yamabe, J., Yamao, Y., and
Kawakami, E. (2022). Prediction algorithm for icu
mortality and length of stay using machine learning.
Scientific Reports, 12(1).
Johnson, A. E., Bulgarelli, L., Shen, L., Gayles, A., Sham-
mout, A., Horng, S., Pollard, T. J., Hao, S., Moody,
B., Gow, B., et al. (2023). Mimic-iv, a freely acces-
sible electronic health record dataset. Scientific data,
10(1):1.
Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., and
Qadir, J. (2023). Privacy-preserving artificial intel-
ligence in healthcare: Techniques and applications.
Computers in Biology and Medicine, page 106848.
Kim, Y., Torroba Hennigen, L., and Wang, P. (2023). New
technique enables faster training of machine-learning
models. MIT News. Accessed: 2024-09-26.
Lazzarini, R., Tianfield, H., and Charissis, V. (2023). Fed-
erated learning for iot intrusion detection. AI.
Mammen, P. M. (2021). Federated learning: Opportunities
and challenges. arXiv preprint arXiv:2101.05428.
Mondrejevski, L., Miliou, I., Montanino, A., Pitts, D.,
Hollm
´
en, J., and Papapetrou, P. (2022). Flicu: a
federated learning workflow for intensive care unit
mortality prediction. In 2022 IEEE 35th Interna-
tional Symposium on Computer-Based Medical Sys-
tems (CBMS), pages 32–37. IEEE.
Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., and
Jirstrand, M. (2018). A performance evaluation of fed-
erated learning algorithms. In Proceedings of the sec-
ond workshop on distributed infrastructures for deep
learning, pages 1–8.
Nistal-Nu
˜
no, B. (2022). Developing machine learning mod-
els for prediction of mortality in the medical inten-
sive care unit. Computer Methods and Programs in
Biomedicine, 216:106663.
Pang, K., Li, L., Ouyang, W., Liu, X., and Tang, Y. (2022).
Establishment of icu mortality risk prediction mod-
els with machine learning algorithm using mimic-iv
database. Diagnostics, 12(5):1068.
Pollard, T. J., Johnson, A. E. W., Raffa, J. D., Celi, L. A.,
Mark, R. G., and Badawi, O. (2018). The eicu col-
laborative research database, a freely available multi-
center database for critical care research. Scientific
Data, 5(1).
Randl, K., Armengol, N. L., Mondrejevski, L., and Miliou,
I. (2023). Early prediction of the risk of icu mortality
with deep federated learning. In 2023 IEEE 36th In-
ternational Symposium on Computer-Based Medical
Systems (CBMS), pages 706–711. IEEE.
Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R.,
Albarqouni, S., Bakas, S., Galtier, M. N., Landman,
B. A., Maier-Hein, K., et al. (2020). The future of
digital health with federated learning. NPJ digital
medicine, 3(1):1–7.
Rosen, M. A. (2021). Energy sustainability with a focus on
environmental perspectives. Earth Systems and Envi-
ronment, 5(2):217–230.
Sharma, S. and Guleria, K. (2024). A comprehensive review
on federated learning based models for healthcare ap-
plications. Artif. Intell. Med., 146(C).
Stanfill, M. H. and Marc, D. T. (2019). Health information
management: implications of artificial intelligence on
healthcare data and information management. Year-
book of medical informatics, 28(01):056–064.
Tu, K., Zheng, S., Wang, X., and Hu, X. (2022). Adap-
tive federated learning via mean field approach. In
2022 IEEE International Conferences on Internet of
Things (iThings) and IEEE Green Computing & Com-
munications (GreenCom) and IEEE Cyber, Physical
& Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cy-
bermatics), pages 168–175. IEEE.
Vieira, P., Maia, E., and Prac¸a, I. (2024). Acute pancre-
atitis mortality prediction with federated learning. In
Progress in Artificial Intelligence - 23rd EPIA Con-
ference on Artificial Intelligence, EPIA 2024, Viana
do Castelo, Portugal, September 3-6, 2024, Proceed-
ings, volume II of Lecture Notes in Computer Science,
pages 3–15. Springer.
Yang, A., Ma, Z., Zhang, C., Han, Y., Hu, Z., Zhang, W.,
Huang, X., and Wu, Y. (2023). Review on applica-
tion progress of federated learning model and security
hazard protection. Digital Communications and Net-
works, 9(1):146–158.
Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated
machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–19.
Zhuang, Y., Li, G., and Feng, J. (2016). A survey on entity
alignment of knowledge base. Journal of Computer
Research and Development, 53(1):165–192.
C¸ elik, E. and G
¨
ull
¨
u, M. K. (2023). Comparison of federated
learning strategies on ecg classification. In 2023 Inno-
vations in Intelligent Systems and Applications Con-
ference (ASYU), pages 1–4.
Privacy-Preserving Mortality Prediction in ICUs Using Federated Learning
95