
confirm the suitability of the method developed here
for the purposes of hyperspectral image compression.
In the future, we plan to focus on improving com-
pression quality, i.e., achieving higher PSNR scores,
while maintaining fast compression times.
REFERENCES
Afromowitz, M. A., Callis, J. B., Heimbach, D. M., DeSoto,
L. A., and Norton, M. K. (1988). Multispectral imag-
ing of burn wounds. In Medical Imaging II, volume
914, pages 500–504. SPIE.
Ball
´
e, J., Laparra, V., and Simoncelli, E. P. (2016). End-
to-end optimized image compression. arXiv preprint
arXiv:1611.01704.
Ball
´
e, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston,
N. (2018). Variational image compression with a scale
hyperprior. arXiv preprint arXiv:1802.01436.
Carrasco, O., Gomez, R. B., Chainani, A., and Roper, W. E.
(2003). Hyperspectral imaging applied to medical di-
agnoses and food safety. In Geo-Spatial and Temporal
Image and Data Exploitation III, volume 5097, pages
215–221. SPIE.
Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., and Wet-
zstein, G. (2021). pi-gan: Periodic implicit genera-
tive adversarial networks for 3d-aware image synthe-
sis. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5799–
5809.
Chen, H., He, B., Wang, H., Ren, Y., Lim, S. N., and Shri-
vastava, A. (2021). Nerv: Neural representations for
videos. Advances in Neural Information Processing
Systems, 34:21557–21568.
Clark, R. N. and Swayze, G. A. (1995). Mapping minerals,
amorphous materials, environmental materials, vege-
tation, water, ice and snow, and other materials: the
usgs tricorder algorithm. In JPL, Summaries of the
Fifth Annual JPL Airborne Earth Science Workshop.
Volume 1: AVIRIS Workshop.
Davies, T., Nowrouzezahrai, D., and Jacobson, A. (2020).
On the effectiveness of weight-encoded neural im-
plicit 3d shapes. arXiv preprint arXiv:2009.09808.
Du, Q. and Fowler, J. E. (2007). Hyperspectral image
compression using jpeg2000 and principal component
analysis. IEEE Geoscience and Remote sensing let-
ters, 4(2):201–205.
Dua, Y., Kumar, V., and Singh, R. S. (2020). Comprehen-
sive review of hyperspectral image compression algo-
rithms. Optical Engineering, 59(9):090902.
Dupont, E., Goli
´
nski, A., Alizadeh, M., Teh, Y. W.,
and Doucet, A. (2021). Coin: Compression with
implicit neural representations. arXiv preprint
arXiv:2103.03123.
Dupont, E., Loya, H., Alizadeh, M., Goli
´
nski, A.,
Teh, Y. W., and Doucet, A. (2022). Coin++:
Data agnostic neural compression. arXiv preprint
arXiv:2201.12904.
Edelman, G. J., Gaston, E., Van Leeuwen, T. G., Cullen,
P., and Aalders, M. C. (2012). Hyperspectral imaging
for non-contact analysis of forensic traces. Forensic
science international, 223(1-3):28–39.
Feng, Y.-Z. and Sun, D.-W. (2012). Application of hyper-
spectral imaging in food safety inspection and control:
a review. Critical reviews in food science and nutri-
tion, 52(11):1039–1058.
Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic
meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pages
1126–1135. PMLR.
Goetz, A. F., Vane, G., Solomon, J. E., and Rock, B. N.
(1985). Imaging spectrometry for earth remote sens-
ing. science, 228(4704):1147–1153.
Good, W. F., Maitz, G. S., and Gur, D. (1994). Joint pho-
tographic experts group (jpeg) compatible data com-
pression of mammograms. Journal of Digital Imag-
ing, 7(3):123–132.
Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G.,
and Frias, J. M. (2007). Hyperspectral imaging–an
emerging process analytical tool for food quality and
safety control. Trends in food science & technology,
18(12):590–598.
Kuula, J., P
¨
ol
¨
onen, I., Puupponen, H.-H., Selander, T.,
Reinikainen, T., Kalenius, T., and Saari, H. (2012).
Using vis/nir and ir spectral cameras for detecting and
separating crime scene details. In Sensors, and Com-
mand, Control, Communications, and Intelligence
(C3I) Technologies for Homeland Security and Home-
land Defense XI, volume 8359, page 83590P. Interna-
tional Society for Optics and Photonics.
Lee, J., Tack, J., Lee, N., and Shin, J. (2021). Meta-learning
sparse implicit neural representations. Advances in
Neural Information Processing Systems, 34:11769–
11780.
Liang, H. (2012). Advances in multispectral and hyperspec-
tral imaging for archaeology and art conservation. Ap-
plied Physics A, 106(2):309–323.
Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ra-
mamoorthi, R., and Chandraker, M. (2021). Mod-
ulated periodic activations for generalizable local
functional representations. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 14214–14223.
Mei, S., Khan, B. M., Zhang, Y., and Du, Q. (2018). Low-
complexity hyperspectral image compression using
folded pca and jpeg2000. In IGARSS 2018-2018 IEEE
International Geoscience and Remote Sensing Sympo-
sium, pages 4756–4759. IEEE.
Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., and
Van Gool, L. (2018). Conditional probability mod-
els for deep image compression. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4394–4402.
Minnen, D., Ball
´
e, J., and Toderici, G. D. (2018). Joint
autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information pro-
cessing systems, 31.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
30