
REFERENCES
Abdi, H. and Williams, L. J. (2010). Tukey’s honestly
significant difference (hsd) test. Encyclopedia of re-
search design, 3(1):1–5.
Ballerini, L. (2024). Particle swarm optimization in 3d med-
ical image registration: A systematic review. Archives
of Computational Methods in Engineering, pages 1–8.
Bansal, J. C., Singh, P., Saraswat, M., Verma, A., Jadon,
S. S., and Abraham, A. (2011). Inertia weight strate-
gies in particle swarm optimization. In 2011 Third
world congress on nature and biologically inspired
computing, pages 633–640. IEEE.
Beheshti, Z. and Shamsuddin, S. M. (2015). Non-
parametric particle swarm optimization for global op-
timization. Applied Soft Computing, 28:345–359.
Bengio, Y. (2009). Learning deep architectures for ai.
Berrar, D. et al. (2019). Cross-validation.
Chen, Y.-p. and Jiang, P. (2010). Analysis of particle in-
teraction in particle swarm optimization. Theoretical
Computer Science, 411(21):2101–2115.
Gao, Y.-J., Shang, Q.-X., Yang, Y.-Y., Hu, R., and Qian, B.
(2023). Improved particle swarm optimization algo-
rithm combined with reinforcement learning for solv-
ing flexible job shop scheduling problem. In Inter-
national Conference on Intelligent Computing, pages
288–298. Springer.
Gr
¨
otschel, M., Lov
´
asz, L., and Schrijver, A. (2012). Ge-
ometric algorithms and combinatorial optimization,
volume 2. Springer Science & Business Media.
Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In
International conference on machine learning, pages
1861–1870. PMLR.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages
1942–1948. ieee.
Kessentini, S. and Barchiesi, D. (2015). Particle swarm
optimization with adaptive inertia weight. Interna-
tional Journal of Machine Learning and Computing,
5(5):368.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Li, W., Liang, P., Sun, B., Sun, Y., and Huang, Y.
(2023). Reinforcement learning-based particle swarm
optimization with neighborhood differential mutation
strategy. Swarm and Evolutionary Computation,
78:101274.
Liu, Y., Lu, H., Cheng, S., and Shi, Y. (2019). An adaptive
online parameter control algorithm for particle swarm
optimization based on reinforcement learning. In 2019
IEEE congress on evolutionary computation (CEC),
pages 815–822. IEEE.
Lu, J., Guo, W., Liu, J., Zhao, R., Ding, Y., and Shi, S.
(2023). An intelligent advanced classification method
for tunnel-surrounding rock mass based on the parti-
cle swarm optimization least squares support vector
machine. Applied Sciences, 13(4):2068.
Miller Jr, R. G. (1997). Beyond ANOVA: basics of applied
statistics. CRC press.
Mirjalili, S., Song Dong, J., Lewis, A., and Sadiq, A. S.
(2020). Particle Swarm Optimization: Theory, Litera-
ture Review, and Application in Airfoil Design, pages
167–184. Springer International Publishing, Cham.
Pawan, Y. N., Prakash, K. B., Chowdhury, S., and Hu, Y.-
C. (2022). Particle swarm optimization performance
improvement using deep learning techniques. Multi-
media Tools and Applications, 81(19):27949–27968.
Qin, Z., Yu, F., Shi, Z., and Wang, Y. (2006). Adaptive
inertia weight particle swarm optimization. In Arti-
ficial Intelligence and Soft Computing–ICAISC 2006:
8th International Conference, Zakopane, Poland, June
25-29, 2006. Proceedings 8, pages 450–459. Springer.
Shi, Y. and Eberhart, R. (1998). A modified particle
swarm optimizer. In 1998 IEEE international confer-
ence on evolutionary computation proceedings. IEEE
world congress on computational intelligence (Cat.
No. 98TH8360), pages 69–73. IEEE.
Song, Y., Wu, Y., Guo, Y., Yan, R., Suganthan, P. N.,
Zhang, Y., Pedrycz, W., Das, S., Mallipeddi, R., Ajani,
O. S., et al. (2024). Reinforcement learning-assisted
evolutionary algorithm: A survey and research op-
portunities. Swarm and Evolutionary Computation,
86:101517.
Wang, D., Tan, D., and Liu, L. (2018). Particle swarm op-
timization algorithm: an overview. Soft computing,
22(2):387–408.
Yin, S., Jin, M., Lu, H., Gong, G., Mao, W., Chen, G., and
Li, W. (2023). Reinforcement-learning-based parame-
ter adaptation method for particle swarm optimization.
Complex & Intelligent Systems, 9(5):5585–5609.
Yoon, S., Yoon, C. H., and Lee, D. (2021). Topological
recovery for non-rigid 2d/3d registration of coronary
artery models. Computer methods and programs in
biomedicine, 200:105922.
Zaman, A. and Ko, S. Y. (2018). Improving the accuracy
of 2d-3d registration of femur bone for bone fracture
reduction robot using particle swarm optimization. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, pages 101–102.
Zhou, J., Zhao, T., Zhao, Z., and Zheng, Z. (2024). Estimat-
ing the state of charge for lithium-ion batteries in elec-
tric vehicles using the aiw-pso-bp algorithm. In 2024
4th International Conference on Electronics, Circuits
and Information Engineering (ECIE), pages 313–318.
IEEE.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
318