
segmentation with graph transformer neural network.
arXiv preprint arXiv:2404.10940.
Allebosch, G., Van Hamme, D., Veelaert, P., and Philips,
W. (2023). Efficient detection of crossing pedestrians
from a moving vehicle with an array of cameras. Op-
tical Engineering, 62(3):031210–031210.
Bolten, T., Pohle-Fr
¨
ohlich, R., and T
¨
onnies, K. D. (2019).
Application of hierarchical clustering for object track-
ing with a dynamic vision sensor. In Computational
Science–ICCS 2019: 19th International Conference,
Faro, Portugal, June 12–14, 2019, Proceedings, Part
V 19, pages 164–176. Springer.
Borer, D., Delbruck, T., and R
¨
osgen, T. (2017). Three-
dimensional particle tracking velocimetry using dy-
namic vision sensors. Experiments in Fluids, 58:1–7.
Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck,
T. (2014). A 240× 180 130 db 3 µs latency global
shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341.
Cao, H., Chen, G., Xia, J., Zhuang, G., and Knoll, A.
(2021). Fusion-based feature attention gate compo-
nent for vehicle detection based on event camera.
IEEE Sensors Journal, 21(21):24540–24548.
Cao, J., Zheng, X., Lyu, Y., Wang, J., Xu, R., and Wang, L.
(2024). Chasing day and night: Towards robust and
efficient all-day object detection guided by an event
camera. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 9026–9032.
IEEE.
Chang, M., Feng, H., Xu, Z., and Li, Q. (2021). Low-light
image restoration with short-and long-exposure raw
pairs. IEEE Transactions on Multimedia, 24:702–714.
Cho, H. and Yoon, K.-J. (2022). Event-image fusion stereo
using cross-modality feature propagation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 454–462.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In 2005 IEEE com-
puter society conference on computer vision and pat-
tern recognition (CVPR’05), volume 1, pages 886–
893. Ieee.
Danelljan, M., H
¨
ager, G., Khan, F. S., and Felsberg, M.
(2016). Discriminative scale space tracking. IEEE
transactions on pattern analysis and machine intelli-
gence, 39(8):1561–1575.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2009). Object detection with discrim-
inatively trained part-based models. IEEE transac-
tions on pattern analysis and machine intelligence,
32(9):1627–1645.
Feng, Y., Lv, H., Liu, H., Zhang, Y., Xiao, Y., and Han,
C. (2020). Event density based denoising method for
dynamic vision sensor. Applied Sciences, 10(6):2024.
Gallego, G., Delbr
¨
uck, T., Orchard, G., Bartolozzi, C.,
Taba, B., Censi, A., Leutenegger, S., Davison, A. J.,
Conradt, J., Daniilidis, K., et al. (2020). Event-based
vision: A survey. IEEE transactions on pattern anal-
ysis and machine intelligence, 44(1):154–180.
Gehrig, D., Loquercio, A., Derpanis, K. G., and Scara-
muzza, D. (2019). End-to-end learning of represen-
tations for asynchronous event-based data. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5633–5643.
Gehrig, D. and Scaramuzza, D. (2024). Low-latency
automotive vision with event cameras. Nature,
629(8014):1034–1040.
Ghosh, S. and Gallego, G. (2022). Multi-event-camera
depth estimation and outlier rejection by refo-
cused events fusion. Advanced Intelligent Systems,
4(12):2200221.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580–587.
Hamaguchi, R., Furukawa, Y., Onishi, M., and Sakurada,
K. (2023). Hierarchical neural memory network for
low latency event processing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 22867–22876.
Hidalgo-Carri
´
o, J., Gehrig, D., and Scaramuzza, D. (2020).
Learning monocular dense depth from events. In 2020
International Conference on 3D Vision (3DV), pages
534–542. IEEE.
Kim, D.-S. and Kwon, J. (2015). Moving object detec-
tion on a vehicle mounted back-up camera. Sensors,
16(1):23.
Kim, J., Ye, G., and Kim, D. (2010). Moving object de-
tection under free-moving camera. In 2010 IEEE In-
ternational Conference on Image Processing, pages
4669–4672. IEEE.
Kulchandani, J. S. and Dangarwala, K. J. (2015). Moving
object detection: Review of recent research trends. In
2015 International conference on pervasive comput-
ing (ICPC), pages 1–5. IEEE.
Lin, T. (2017). Focal loss for dense object detection. arXiv
preprint arXiv:1708.02002.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part I 14,
pages 21–37. Springer.
Liu, Z., Yang, N., Wang, Y., Li, Y., Zhao, X., and Wang,
F.-Y. (2023). Enhancing traffic object detection in
variable illumination with rgb-event fusion. arXiv
preprint arXiv:2311.00436.
Mane, S. and Mangale, S. (2018). Moving object detec-
tion and tracking using convolutional neural networks.
In 2018 second international conference on intelli-
gent computing and control systems (ICICCS), pages
1809–1813. IEEE.
Mishra, A., Ghosh, R., Principe, J. C., Thakor, N. V., and
Kukreja, S. L. (2017). A saccade based framework
for real-time motion segmentation using event based
vision sensors. Frontiers in neuroscience, 11:83.
Mitrokhin, A., Hua, Z., Fermuller, C., and Aloimonos, Y.
(2020). Learning visual motion segmentation using
event surfaces. In Proceedings of the IEEE/CVF Con-
Low Latency Pedestrian Detection Based on Dynamic Vision Sensor and RGB Camera Fusion
849