
ing a smartphone. IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, 8(2):230–239.
Christiansen, E. H., Frost, L., MØlgaar, H., Nielsen, T. T.,
and Pedersen, A. K. (1996). Noise in the signal-
averaged electrocardiogram and accuracy for identi-
fication of patients with sustained monomorphic ven-
tricular tachycardia after myocardial infarction. Euro-
pean Heart Journal, 17(6):911–916.
Colloca, R., Johnson, A. E., Mainardi, L., and Clifford,
G. D. (2013). A support vector machine approach for
reliable detection of atrial fibrillation events. In Com-
puting in Cardiology 2013, pages 1047–1050. IEEE.
Guandalini, G. S., Liang, J. J., and Marchlinski, F. E.
(2019). Ventricular tachycardia ablation. JACC: Clin-
ical Electrophysiology, 5(12):1363–1383.
Hamil, H., Zidelmal, Z., Azzaz, M. S., Sakhi, S., Kaibou,
R., Djilali, S., and Ould Abdeslam, D. (2022). De-
sign of a secured telehealth system based on multiple
biosignals diagnosis and classification for iot applica-
tion. Expert Systems, 39(4):e12765.
Kaplan Berkaya, S., Uysal, A. K., Sora Gunal, E., Ergin, S.,
Gunal, S., and Gulmezoglu, M. B. (2018). A survey
on ecg analysis. Biomedical Signal Processing and
Control, 43:216–235.
Kher, R. (2019). Signal processing techniques for removing
noise from ecg signals. Journal of Biomedical Engi-
neering and Research.
Laudato, G., Boldi, F., Colavita, A. R., Rosa, G., Scal-
abrino, S., Lazich, A., and Oliveto, R. (2021a). Com-
bining rhythmic and morphological ecg features for
automatic detection of atrial fibrillation: local and
global prediction models. In Biomedical Engineering
Systems and Technologies: 13th International Joint
Conference, BIOSTEC 2020, Valletta, Malta, Febru-
ary 24–26, 2020, Revised Selected Papers 13, pages
425–441. Springer.
Laudato, G., Scalabrino, S., Colavita, A. R., Chiac-
chiari, Q., D’Orazio, R., Donadelli, R., De Vito,
L., Picariello, F., Tudosa, I., Malatesta, R., et al.
(2021b). Atticus: Ambient-intelligent tele-monitoring
and telemetry for incepting and catering over hu-
man sustainability. Frontiers in Human Dynamics,
3:614309.
Mandala, S. and Di, T. C. (2017). Ecg parameters for ma-
lignant ventricular arrhythmias: a comprehensive re-
view. Journal of medical and biological engineering,
37(4):441–453.
Migdady, I., Russman, A., and Buletko, A. B. (2021). Atrial
fibrillation and ischemic stroke: a clinical review. In
Seminars in Neurology, volume 41, pages 348–364.
Thieme Medical Publishers, Inc.
Mohammad-Taheri, S., Shirazi, M.-A. M., and Rafiezade,
A. (2016). Slope analysis based methods for detection
of ventricular fibrillation and ventricular tachycardia.
In 2016 24th Iranian Conference on Electrical Engi-
neering (ICEE), pages 1100–1103. IEEE.
Mohd Apandi, Z. F., Ikeura, R., Hayakawa, S., and Tsut-
sumi, S. (2020). An analysis of the effects of noisy
electrocardiogram signal on heartbeat detection per-
formance. Bioengineering, 7(2):53.
Mohebbi, M. and Ghassemian, H. (2008). Detection of
atrial fibrillation episodes using svm. In 2008 30th
annual international conference of the IEEE engineer-
ing in medicine and biology society, pages 177–180.
IEEE.
Murat, F., Sadak, F., Yildirim, O., Talo, M., Murat, E., Kara-
batak, M., Demir, Y., Tan, R.-S., and Acharya, U. R.
(2021). Review of deep learning-based atrial fibrilla-
tion detection studies. International Journal of Envi-
ronmental Research and Public Health, 18(21).
Oster, J. and Clifford, G. D. (2015). Impact of the presence
of noise on rr interval-based atrial fibrillation detec-
tion. Journal of Electrocardiology, 48(6):947–951.
Pritchett, E. L. (1992). Management of atrial fibrillation.
New England Journal of Medicine, 326(19):1264–
1271.
Rajeshwari, M. and Kavitha, K. (2021). A review of
feature extraction from ecg signals and classifica-
tion/detection for ventricular arrhythmias. Rec. Ad-
van. Comp. Sci. Commun, 14(1):192–200.
Ramakrishnan, S., Akshaya, V., Kishor, S., and Thyagara-
jan, T. (2017). Real time implementation of arrhyth-
mia classification algorithm using statistical methods.
In 2017 Trends in Industrial Measurement and Au-
tomation (TIMA), pages 1–4.
Ramkumar, S., Nerlekar, N., D’Souza, D., Pol, D. J.,
Kalman, J. M., and Marwick, T. H. (2018). Atrial
fibrillation detection using single lead portable elec-
trocardiographic monitoring: a systematic review and
meta-analysis. BMJ open, 8(9):e024178.
Sadr, N., Jayawardhana, M., Pham, T. T., Tang, R., Balaei,
A. T., and de Chazal, P. (2018). A low-complexity
algorithm for detection of atrial fibrillation using an
ecg. Physiological measurement, 39(6):064003.
Sepulveda-Suescun, J., Murillo-Escobar, J., Urda-Benitez,
R., Orrego-Metaute, D., and Orozco-Duque, A.
(2017). Atrial fibrillation detection through heart
rate variability using a machine learning approach
and poincare plot features. In VII Latin American
Congress on Biomedical Engineering CLAIB 2016,
Bucaramanga, Santander, Colombia, October 26th-
28th, 2016, pages 565–568. Springer.
Strik, M., Sacristan, B., Bordachar, P., Duchateau, J.,
Eschalier, R., Mondoly, P., Laborderie, J., Gassa,
N., Zemzemi, N., Laborde, M., Garrido, J., Ma-
tencio Perabla, C., Jimenez-Perez, G., Camara, O.,
Ha
¨
ıssaguerre, M., Dubois, R., and Ploux, S. (2023).
Artificial intelligence for detection of ventricular over-
sensing: Machine learning approaches for noise de-
tection within nonsustained ventricular tachycardia
episodes remotely transmitted by pacemakers and im-
plantable cardioverter-defibrillators. Heart Rhythm,
20(10):1378–1384. Focus Issue: Sudden Death.
Wellens, H. J. (2001). Ventricular tachycardia: diagnosis
of broad qrs complex tachycardia. Heart, 86(5):579–
585.
Xiong, Z., Stiles, M. K., and Zhao, J. (2017). Robust ecg
signal classification for detection of atrial fibrillation
using a novel neural network. In 2017 Computing in
Cardiology (CinC), pages 1–4. IEEE.
Assessing Signal Noise Effects on Machine Learning Models for ECG-Based Cardiac Diagnosis
465