Automated  Loss-of-Balance  Event  Identification  in 
Older  Adults  at  Risk  of  Falls  during  Real-World 
Walking Using Wearable Inertial Measurement Units. 
Sensors, 21(14), 4661. doi: 10.3390/s21144661 
Hernigou, P., Bumbasirevic, M., Pecina, M., & Scarlat, M. 
M.  (2024).  Eight  billion  people,  sixteen  billion  hip 
joints today: are future orthopedists prepared to treat a 
world of ultra-old  patients and centenarians in  2050? 
International Orthopaedics,  48(8),  1939–1944.  doi: 
10.1007/s00264-024-06245-x 
Hosseini, I., Rojas, R. F., & Ghahramani, M. (2024). Fall 
Risk  Assessment  Using  Single  IMU.  2024 IEEE 
International Symposium on Medical Measurements 
and Applications (MeMeA),  1–6.  doi: 
10.1109/MeMeA60663.2024.10596880 
Jaén-Vargas,  M.,  Reyes  Leiva,  K.  M.,  Fernandes,  F., 
Barroso Gonçalves, S., Tavares Silva, M., Lopes, D. S., 
&  Serrano  Olmedo,  J.  J.  (2022).  Effects  of  sliding 
window variation  in the  performance of acceleration-
based human activity recognition using deep learning 
models.  PeerJ Computer Science,  8,  e1052.  doi: 
10.7717/peerj-cs.1052 
Kamran, F., Harrold, K., Zwier, J., Carender, W., Bao, T., 
Sienko,  K.  H.,  &  Wiens,  J.  (2021).  Automatically 
evaluating  balance  using  machine  learning  and  data 
from  a  single  inertial  measurement  unit.  Journal of 
NeuroEngineering and Rehabilitation, 18(1), 114. doi: 
10.1186/s12984-021-00894-4 
Kojima, G., Iliffe, S., & Walters, K. (2018). Frailty index 
as  a  predictor  of  mortality:  a  systematic  review  and 
meta-analysis.  Age and Ageing,  47(2),  193–200.  doi: 
10.1093/ageing/afx162 
Kou, J., Xu, X., Ni, X., Ma, S., & Guo, L. (2024). Fall-risk 
assessment  of  aged  workers  using  wearable  inertial 
measurement units based on machine learning. Safety 
Science, 176, 106551. doi: 10.1016/j.ssci.2024.106551 
Kuduz, H., & Kaçar, F. (2023). A deep learning approach 
for  human  gait  recognition  from  time-frequency 
analysis  images  of  inertial  measurement  unit  signal. 
International Journal of Applied Methods in 
Electronics and Computers.  doi:  10.58190/ 
ijamec.2023.44 
Li, C., Cai, Y., Li, Y., & Zhang, P. (2024). Fusion of Dual 
Sensor  Features  for  Fall  Risk  Assessment  with 
Improved Attention Mechanism. Traitement Du Signal, 
41(1), 73–83. doi: 10.18280/ts.410106 
Michau, G., Frusque, G., & Fink, O. (2022). Fully learnable 
deep wavelet transform for unsupervised monitoring of 
high-frequency time series. Proceedings of the National 
Academy of Sciences,  119(8).  doi:  10.1073/ 
pnas.2106598119 
Minici, D., Cola, G., Giordano, A., Antoci, S., Girardi, E., 
Bari,  M.  Di,  &  Avvenuti,  M.  (2022).  Towards 
Automated Assessment of Frailty Status Using a Wrist-
Worn Device. IEEE Journal of Biomedical and Health 
Informatics,  26
(3),  1013–1022.  doi:  10.1109/JBHI. 
2021.3100979 
Obbia, P., Graham, C., Duffy, F. J. R., & Gobbens, R. J. J. 
(2020).  Preventing  frailty  in  older  people:  An 
exploration of primary care professionals’ experiences. 
International Journal of Older People Nursing, 15(2). 
doi: 10.1111/opn.12297 
Ordóñez, F., & Roggen, D. (2016). Deep Convolutional and 
LSTM  Recurrent  Neural  Networks  for  Multimodal 
Wearable  Activity  Recognition.  Sensors,  16(1),  115. 
doi: 10.3390/s16010115 
Pasieczna,  A.  H.,  Szczepanowski,  R.,  Sobecki,  J., 
Katarzyniak, R.,  Uchmanowicz, I.,  Gobbens, R.  J. J., 
Kahsin, A., & Dixit, A. (2023). Importance analysis of 
psychosociological  variables  in  frailty  syndrome  in 
heart failure patients using machine learning approach. 
Scientific Reports, 13(1),  7782.  doi:  10.1038/s41598-
023-35037-3 
San-Segundo, R., Navarro-Hellín, H., Torres-Sánchez, R., 
Hodgins,  J.,  &  De  la  Torre,  F.  (2019).  Increasing 
Robustness  in  the  Detection  of  Freezing  of  Gait  in 
Parkinson’s  Disease.  Electronics,  8(2),  119.  doi: 
10.3390/electronics8020119 
Sánchez-DelaCruz, E., Weber, R., Biswal, R. R., Mejía, J., 
Hernández-Chan, G., & Gómez-Pozos, H. (2019). Gait 
Biomarkers  Classification  by  Combining  Assembled 
Algorithms  and  Deep  Learning:  Results  of  a  Local 
Study.  Computational and Mathematical Methods in 
Medicine, 2019, 1–14. doi: 10.1155/2019/3515268 
Sun, Q., Xia, X., & He, F. (2024). Longitudinal association 
between Body mass index (BMI), BMI trajectories and 
the  risk  of  frailty  among  older  adults:  A  systematic 
review and meta-analysis of prospective cohort studies. 
Archives of Gerontology and Geriatrics, 124, 105467. 
doi: 10.1016/j.archger.2024.105467 
United Nation. (2024). World Population Prospects 2024. 
Retrieved from https://population.un.org/wpp/ 
van Kuppevelt, D., Meijer, C., Huber, F., van der Ploeg, A., 
Georgievska,  S.,  &  van  Hees,  V.  T.  (2020).  Mcfly: 
Automated deep learning on time series. SoftwareX, 12, 
100548. doi: 10.1016/j.softx.2020.100548 
Wasikowski, M., & Chen, X. (2010). Combating the Small 
Sample  Class  Imbalance  Problem  Using  Feature 
Selection. IEEE Transactions on Knowledge and Data 
Engineering,  22(10),  1388–1400.  doi:  10.1109/ 
TKDE.2009.187 
World  Health,  O.  (2024).  Ageing.  Retrieved  from 
https://www.who.int/health-topics/ageing#tab=tab_1.