Automated Loss-of-Balance Event Identification in
Older Adults at Risk of Falls during Real-World
Walking Using Wearable Inertial Measurement Units.
Sensors, 21(14), 4661. doi: 10.3390/s21144661
Hernigou, P., Bumbasirevic, M., Pecina, M., & Scarlat, M.
M. (2024). Eight billion people, sixteen billion hip
joints today: are future orthopedists prepared to treat a
world of ultra-old patients and centenarians in 2050?
International Orthopaedics, 48(8), 1939–1944. doi:
10.1007/s00264-024-06245-x
Hosseini, I., Rojas, R. F., & Ghahramani, M. (2024). Fall
Risk Assessment Using Single IMU. 2024 IEEE
International Symposium on Medical Measurements
and Applications (MeMeA), 1–6. doi:
10.1109/MeMeA60663.2024.10596880
Jaén-Vargas, M., Reyes Leiva, K. M., Fernandes, F.,
Barroso Gonçalves, S., Tavares Silva, M., Lopes, D. S.,
& Serrano Olmedo, J. J. (2022). Effects of sliding
window variation in the performance of acceleration-
based human activity recognition using deep learning
models. PeerJ Computer Science, 8, e1052. doi:
10.7717/peerj-cs.1052
Kamran, F., Harrold, K., Zwier, J., Carender, W., Bao, T.,
Sienko, K. H., & Wiens, J. (2021). Automatically
evaluating balance using machine learning and data
from a single inertial measurement unit. Journal of
NeuroEngineering and Rehabilitation, 18(1), 114. doi:
10.1186/s12984-021-00894-4
Kojima, G., Iliffe, S., & Walters, K. (2018). Frailty index
as a predictor of mortality: a systematic review and
meta-analysis. Age and Ageing, 47(2), 193–200. doi:
10.1093/ageing/afx162
Kou, J., Xu, X., Ni, X., Ma, S., & Guo, L. (2024). Fall-risk
assessment of aged workers using wearable inertial
measurement units based on machine learning. Safety
Science, 176, 106551. doi: 10.1016/j.ssci.2024.106551
Kuduz, H., & Kaçar, F. (2023). A deep learning approach
for human gait recognition from time-frequency
analysis images of inertial measurement unit signal.
International Journal of Applied Methods in
Electronics and Computers. doi: 10.58190/
ijamec.2023.44
Li, C., Cai, Y., Li, Y., & Zhang, P. (2024). Fusion of Dual
Sensor Features for Fall Risk Assessment with
Improved Attention Mechanism. Traitement Du Signal,
41(1), 73–83. doi: 10.18280/ts.410106
Michau, G., Frusque, G., & Fink, O. (2022). Fully learnable
deep wavelet transform for unsupervised monitoring of
high-frequency time series. Proceedings of the National
Academy of Sciences, 119(8). doi: 10.1073/
pnas.2106598119
Minici, D., Cola, G., Giordano, A., Antoci, S., Girardi, E.,
Bari, M. Di, & Avvenuti, M. (2022). Towards
Automated Assessment of Frailty Status Using a Wrist-
Worn Device. IEEE Journal of Biomedical and Health
Informatics, 26
(3), 1013–1022. doi: 10.1109/JBHI.
2021.3100979
Obbia, P., Graham, C., Duffy, F. J. R., & Gobbens, R. J. J.
(2020). Preventing frailty in older people: An
exploration of primary care professionals’ experiences.
International Journal of Older People Nursing, 15(2).
doi: 10.1111/opn.12297
Ordóñez, F., & Roggen, D. (2016). Deep Convolutional and
LSTM Recurrent Neural Networks for Multimodal
Wearable Activity Recognition. Sensors, 16(1), 115.
doi: 10.3390/s16010115
Pasieczna, A. H., Szczepanowski, R., Sobecki, J.,
Katarzyniak, R., Uchmanowicz, I., Gobbens, R. J. J.,
Kahsin, A., & Dixit, A. (2023). Importance analysis of
psychosociological variables in frailty syndrome in
heart failure patients using machine learning approach.
Scientific Reports, 13(1), 7782. doi: 10.1038/s41598-
023-35037-3
San-Segundo, R., Navarro-Hellín, H., Torres-Sánchez, R.,
Hodgins, J., & De la Torre, F. (2019). Increasing
Robustness in the Detection of Freezing of Gait in
Parkinson’s Disease. Electronics, 8(2), 119. doi:
10.3390/electronics8020119
Sánchez-DelaCruz, E., Weber, R., Biswal, R. R., Mejía, J.,
Hernández-Chan, G., & Gómez-Pozos, H. (2019). Gait
Biomarkers Classification by Combining Assembled
Algorithms and Deep Learning: Results of a Local
Study. Computational and Mathematical Methods in
Medicine, 2019, 1–14. doi: 10.1155/2019/3515268
Sun, Q., Xia, X., & He, F. (2024). Longitudinal association
between Body mass index (BMI), BMI trajectories and
the risk of frailty among older adults: A systematic
review and meta-analysis of prospective cohort studies.
Archives of Gerontology and Geriatrics, 124, 105467.
doi: 10.1016/j.archger.2024.105467
United Nation. (2024). World Population Prospects 2024.
Retrieved from https://population.un.org/wpp/
van Kuppevelt, D., Meijer, C., Huber, F., van der Ploeg, A.,
Georgievska, S., & van Hees, V. T. (2020). Mcfly:
Automated deep learning on time series. SoftwareX, 12,
100548. doi: 10.1016/j.softx.2020.100548
Wasikowski, M., & Chen, X. (2010). Combating the Small
Sample Class Imbalance Problem Using Feature
Selection. IEEE Transactions on Knowledge and Data
Engineering, 22(10), 1388–1400. doi: 10.1109/
TKDE.2009.187
World Health, O. (2024). Ageing. Retrieved from
https://www.who.int/health-topics/ageing#tab=tab_1.