
tion capture and ML technologies. As a future work,
we plan to integrate into 2VITA-B PHYSICAL a hand
tracking device aiming at supporting specific hand re-
habilitation exercises. Furthermore, we aim to im-
prove the motion-tracking capabilities by incorporat-
ing multiple Kinect sensors.
ACKNOWLEDGMENTS
This research was funded by Ministry of Defence
grant number 20536 (December 13, 2019) “2VITA-
B PHYSICAL: Veteran Virtual Training for Aging
Blockchain” – Proposal a2018.137.
REFERENCES
Adans-Dester, C., Hankov, N., O’Brien, A., Vergara-Diaz,
G., Black-Schaffer, R., Zafonte, R., Dy, J., Lee, S. I.,
and Bonato, P. (2020). Enabling precision rehabili-
tation interventions using wearable sensors and ma-
chine learning to track motor recovery. NPJ digital
medicine, 3(1):1–10.
Ahammad, S. H., Rahman, M. Z. U., Rao, L. K., Sulthana,
A., Guptha, N., and Lay-Ekuakille, A. (2020). A
multi-level sensor based spinal cord disorder classi-
fication model for patient wellness and remote moni-
toring. IEEE Sensors Journal.
Alpaydın, E. (2021). Machine Learning, Revised And Up-
dated Edition. The MIT Press.
Antico, M., Balletti, N., Ciccotelli, A., Ciccotelli, M.,
Laudato, G., Lazich, A., Oliveto, R., Notaranto-
nio, M., Ricciardi, S., Scalabrino, S., et al. (2021a).
2ViTA-B Physical: An intelligent home rehabilitation
system based on Microsoft Azure Kinect DK. Fron-
tiers in Human Dynamics, page 54.
Antico, M., Balletti, N., Laudato, G., Lazich, A., Notaran-
tonio, M., Oliveto, R., Ricciardi, S., Scalabrino, S.,
and Simeone, J. (2021b). Postural control assessment
via Microsoft Azure Kinect DK: An evaluation study.
Computer Methods and Programs in Biomedicine,
209:106324.
Balletti, N., Cascitelli, A., Gabrieli, P., Guglielmi, E.,
Laudato, G., Lazich, A., Notarantonio, M., Oliveto,
R., Ricciardi, S., Scalabrino, S., and Simeone, J.
(2024). Appendix figure. https://bit.ly/3DnLPkT. 18
dicembre 2024.
Biebl, J. T., Rykala, M., Strobel, M., Bollinger, P. K., Ulm,
B., Kraft, E., Huber, S., and Lorenz, A. (2021). App-
based feedback for rehabilitation exercise correction
in patients with knee or hip osteoarthritis: Prospective
cohort study. Journal of Medical Internet Research,
23(7):e26658.
Bijalwan, V., Semwal, V. B., Singh, G., and Mandal, T. K.
(2022). Hdl-psr: Modelling spatio-temporal features
using hybrid deep learning approach for post-stroke
rehabilitation. Neural Processing Letters, pages 1–20.
Chae, S. H., Kim, Y., Lee, K.-S., and Park, H.-S. (2020).
Development and clinical evaluation of a web-based
upper limb home rehabilitation system using a smart-
watch and machine learning model for chronic stroke
survivors: prospective comparative study. JMIR
mHealth and uHealth, 8(7):e17216.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence
research, 16:321–357.
Han, D., Kuschner, D., and Wang, Y.-f. (2005). Upper limb
position sensing: A machine vision approach. In Con-
ference Proceedings. 2nd International IEEE EMBS
Conference on Neural Engineering, 2005., pages 490–
493. IEEE.
Imura, T., Iwamoto, Y., Inagawa, T., Imada, N., Tanaka,
R., Toda, H., Inoue, Y., Araki, H., and Araki, O.
(2021). Decision tree algorithm identifies stroke pa-
tients likely discharge home after rehabilitation using
functional and environmental predictors. Journal of
Stroke and Cerebrovascular Diseases, 30(4):105636.
Kashi, S., Polak, R. F., Lerner, B., Rokach, L., and Levy-
Tzedek, S. (2020). A machine-learning model for
automatic detection of movement compensations in
stroke patients. IEEE Transactions on Emerging Top-
ics in Computing, 9(3):1234–1247.
Lee, M. H. (2018). A technology for computer-assisted
stroke rehabilitation. In 23rd International Confer-
ence on Intelligent User Interfaces, pages 665–666.
Lee, M. H., Siewiorek, D. P., Smailagic, A., Bernardino,
A., and Berm
´
udez i Badia, S. (2020). Interactive hy-
brid approach to combine machine and human intel-
ligence for personalized rehabilitation assessment. In
Proceedings of the ACM Conference on Health, Infer-
ence, and Learning, pages 160–169.
Liao, Y., Vakanski, A., Xian, M., Paul, D., and Baker, R.
(2020). A review of computational approaches for
evaluation of rehabilitation exercises. Computers in
biology and medicine, 119:103687.
Maclean, N., Pound, P., Wolfe, C., and Rudd, A. (2002).
The concept of patient motivation: a qualitative
analysis of stroke professionals’ attitudes. Stroke,
33(2):444–448.
Osgouei, R. H., Soulsby, D., and Bello, F. (2020). Rehabili-
tation exergames: Use of motion sensing and machine
learning to quantify exercise performance in healthy
volunteers. JMIR Rehabilitation and Assistive Tech-
nologies, 7(2):e17289.
Ranasinghe, I., Dantu, R., Albert, M. V., Watts, S., and
Ocana, R. (2021). Cyber-physiotherapy: Rehabili-
tation to training. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM),
pages 1054–1057. IEEE.
Seifallahi, M., Mehraban, A. H., Galvin, J. E., and Gho-
raani, B. (2022). Alzheimer’s disease detection using
comprehensive analysis of timed up and go test via
kinect v. 2 camera and machine learning. IEEE Trans-
actions on Neural Systems and Rehabilitation Engi-
neering, 30:1589–1600.
Shaughnessy, M., Resnick, B. M., and Macko, R. F. (2006).
Testing a model of post-stroke exercise behavior. Re-
habilitation nursing, 31(1):15–21.
HEALTHINF 2025 - 18th International Conference on Health Informatics
474