
dicators in android: Insights from eye tracking. In
Proceedings of the 10th International Conference on
Information Systems Security and Privacy - Volume 1:
ICISSP, pages 320–329. INSTICC, SciTePress.
Guerra., M., Milanese., R., Oliveto., R., and Fasano., F.
(2023). Rpcdroid: Runtime identification of permis-
sion usage contexts in android applications. In Pro-
ceedings of the 9th International Conference on Infor-
mation Systems Security and Privacy - ICISSP, pages
714–721. INSTICC, SciTePress.
Guerra, M., Scalabrino, S., Fasano, F., and Oliveto, R.
(2023). An empirical study on the effectiveness of pri-
vacy indicators. IEEE Transactions on Software En-
gineering, 49(10):4610–4623.
Kong, A., Zhao, S., Chen, H., Li, Q., Qin, Y., Sun, R., Zhou,
X., Wang, E., and Dong, X. (2024). Better zero-shot
reasoning with role-play prompting.
Li, L., Wang, R., Zhan, X., Wang, Y., Gao, C., Wang, S.,
and Liu, Y. (2023). What you see is what you get? it
is not the case! detecting misleading icons for mobile
applications. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, page 538–550, New York,
NY, USA. ACM.
Liu, B., Lin, J., and Sadeh, N. (2014). Reconciling mo-
bile app privacy and usability on smartphones: could
user privacy profiles help? In Proceedings of the 23rd
International Conference on World Wide Web, WWW
’14, page 201–212, New York, NY, USA. ACM.
Malviya, V. K., Tun, Y. N., Leow, C. W., Xynyn, A. T.,
Shar, L. K., and Jiang, L. (2023). Fine-grained in-
context permission classification for android apps us-
ing control-flow graph embedding. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1225–1237.
Micinski, K., Votipka, D., Stevens, R., Kofinas, N.,
Mazurek, M. L., and Foster, J. S. (2017). User in-
teractions and permission use on android. In Proc. of
the 2017 CHI Conference on Human Factors in Com-
puting Systems, CHI ’17, page 362–373, New York,
NY, USA. ACM.
Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M.,
Socher, R., Amatriain, X., and Gao, J. (2024). Large
language models: A survey.
Nauman, M., Khan, S., Othman, A. T., and Musa, S. (2015).
Realization of a user-centric, privacy preserving per-
mission framework for android. Security and Commu-
nication Networks, 8(3):368–382.
Oglaza, A., Laborde, R., Zarat
´
e, P., Benzekri, A., and
Barr
`
ere, F. (2017). A new approach for man-
aging android permissions: learning users’ prefer-
ences. EURASIP Journal on Information Security,
2017(1):13.
Olejnik, K., Dacosta, I., Machado, J. S., Huguenin, K.,
Khan, M. E., and Hubaux, J.-P. (2017). Smarper:
Context-aware and automatic runtime-permissions for
mobile devices. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 1058–1076.
Rashidi, B., Fung, C., Nguyen, A., Vu, T., and Bertino,
E. (2018). Android user privacy preserving through
crowdsourcing. IEEE Transactions on Information
Forensics and Security, 13(3):773–787.
Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang,
H. J., and Cowan, C. (2012). User-driven access con-
trol: Rethinking permission granting in modern oper-
ating systems. In 2012 IEEE Symposium on Security
and Privacy, pages 224–238.
Rush, A. (2018). The annotated transformer. In Park, E. L.,
Hagiwara, M., Milajevs, D., and Tan, L., editors, Proc.
of Workshop for NLP Open Source Software (NLP-
OSS), pages 52–60, Melbourne, Australia. ACL.
Sabahi, F., Ahmad, M. O., and Swamy, M. N. S. (2018).
Content-based image retrieval using perceptual im-
age hashing and hopfield neural network. In 2018
IEEE 61st International Midwest Symposium on Cir-
cuits and Systems (MWSCAS), pages 352–355.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S.,
Wagner, D., and Beznosov, K. (2015). Android
permissions remystified: A field study on contex-
tual integrity. In 24th USENIX Security Symposium
(USENIX Security 15), pages 499–514, Washington,
D.C. USENIX Association.
Wu, J., Gan, W., Chen, Z., Wan, S., and Yu, P. S. (2023).
Multimodal large language models: A survey. In 2023
IEEE International Conference on Big Data (Big-
Data), pages 2247–2256.
Xi, S., Yang, S., Xiao, X., Yao, Y., Xiong, Y., Xu, F.,
Wang, H., Gao, P., Liu, Z., Xu, F., and Lu, J. (2019).
Deepintent: Deep icon-behavior learning for detect-
ing intention-behavior discrepancy in mobile apps. In
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19,
page 2421–2436, New York, NY, USA. ACM.
Xiao, X., Wang, X., Cao, Z., Wang, H., and Gao, P. (2019).
Iconintent: Automatic identification of sensitive ui
widgets based on icon classification for android apps.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 257–268.
Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., and Zhang, Y.
(2024). A survey on large language model (llm) se-
curity and privacy: The good, the bad, and the ugly.
High-Confidence Computing, 4(2):100211.
Ye, Q., Axmed, M., Pryzant, R., and Khani, F. (2024).
Prompt engineering a prompt engineer.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. (2023).
A survey of large language models.
Zhauniarovich, Y. and Gadyatskaya, O. (2016). Small
changes, big changes: An updated view on the an-
droid permission system. In Monrose, F., Dacier, M.,
Blanc, G., and Garcia-Alfaro, J., editors, Research
in Attacks, Intrusions, and Defenses, pages 346–367,
Cham. Springer International Publishing.
Assessing the Effectiveness of an LLM-Based Permission Model for Android
47