
Koh, H., Kim, D., Ha, J.-W., and Choi, J. (2022). Online
continual learning on class incremental blurry task
configuration with anytime inference. arXiv preprint
abs/2110.10031.
Kuang, K., Cui, P., Athey, S., Xiong, R., and Li, B. (2018).
Stable prediction across unknown environments. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD’18, pages 1617–1626, New York, NY, USA. As-
sociation for Computing Machinery.
Kumar, P. and Srivastava, M. M. (2018). Example min-
ing for incremental learning in medical imaging. In
2018 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 48–51.
Kumari, S. and Singh, P. (2024). Deep learning for unsuper-
vised domain adaptation in medical imaging: Recent
advancements and future perspectives. Computers in
Biology and Medicine, 170:107912.
Lenga, M., Schulz, H., and Saalbach, A. (2020). Con-
tinual learning for domain adaptation in chest x-ray
classification. In Proceedings of the Third Confer-
ence on Medical Imaging with Deep Learning, PMLR
121:413-423, 2020.
Li, Z. and Hoiem, D. (2017). Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12):2935–2947.
Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic
memory for continual learning. In Proceedings of the
31st International Conference on Neural Information
Processing Systems, NIPS’17, pages 6470–6479. Cur-
ran Associates Inc.
OpenAI (2023). GPT-4 Technical Report.
https://openai.com/research/gpt-4.
Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. (2019). Continual Lifelong Learning
with Neural Networks: A Review. Neural Networks,
113:54–71.
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, I. (2021). Learn-
ing transferable visual models from natural language
supervision. In Meila, M. and Zhang, T., editors, Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learn-
ing Research, pages 8748–8763. PMLR.
Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C. H. (2017). iCaRL: Incremental Classifier and Rep-
resentation Learning. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 5533–5542.
Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu,
Y., and Tesauro, G. (2019). Learning to learn with-
out forgetting by maximizing transfer and minimizing
interference. arXiv preprint abs/1810.11910.
Robins, A. (1993). Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 5(2):123–146.
Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018).
Overcoming catastrophic forgetting with hard atten-
tion to the task. In International Conference on Ma-
chine Learning, pages 4548–4557. PMLR.
Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Con-
tinual learning with deep generative replay. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, pages
2994–3003. Curran Associates Inc.
Shokri, R. and Shmatikov, V. (2015). Privacy-preserving
deep learning. In 2015 53rd Annual Allerton Con-
ference on Communication, Control, and Computing
(Allerton), pages 909–910.
Valindria, V. V., Lavdas, I., Bai, W., Kamnitsas, K.,
Aboagye, E. O., Rockall, A. G., Rueckert, D., and
Glocker, B. (2018). Domain Adaptation for MRI Or-
gan Segmentation using Reverse Classification Accu-
racy. arXiv preprint abs/1806.00363.
Venkataramani, R., Ravishankar, H., and Anamandra, S.
(2018). Towards continuous domain adaptation for
healthcare. arXiv preprint abs/1812.01281.
Wang, L., Zhang, X., Su, H., and Zhu, J. (2024). A Com-
prehensive Survey of Continual Learning: Theory,
Method and Application. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 46(8):5362–
5383.
Zhang, J., Fu, Y., Peng, Z., Yao, D., and He, K. (2024).
CORE: Mitigating Catastrophic Forgetting in Contin-
ual Learning through Cognitive Replay. arXiv preprint
abs/2402.01348.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
92