
skin cancer using fuzzy u-network via deep learning.
Measurement: Sensors, 26.
Canny, J. (1986). A computational approach to edge detec-
tion.
Cavalcanti, P. G. and Scharcanski, J. (2013). Macro-
scopic pigmented skin lesion segmentation and its in-
fluence on lesion classification and diagnosis, vol-
ume 6, pages 15–39. Springer Netherlands.
Chan, T. F. and Vese, L. A. (2001). Active contours without
edges.
et al., A. S.-P. (2018). Quantitative evaluation of binary dig-
ital region asymmetry with application to skin lesion
detection philip payne. BMC Medical Informatics and
Decision Making, 18.
et al., C. R. (2012). Dermoscopy of squamous cell carci-
noma and keratoacanthoma. Archives of Dermatology,
148:1386–1392.
et al., F. B. (2023). Artificial intelligence algorithms for
benign vs. malignant dermoscopic skin lesion image
classification. Bioengineering, 10.
et al., F. D. (2017). Segmentation and classification of
melanoma and benign skin lesions. Optik, 140:749–
761.
et al., G. (2019). Atlante di dermoscopia. Piccin.
et al., V. R. (2021). Metabolomic analysis of actinic ker-
atosis and scc suggests a grade-independent model of
squamous cancerization. Cancers, 13.
Hafner, C. and Vogt, T. (2008). Seborrheic keratosis.
Khan, H., Yadav, A., Santiago, R., and Chaudhari,
S. (2020). Automated non-invasive diagnosis of
melanoma skin cancer using dermo-scopic images.
ITM Web of Conferences, 32:03029.
Lara, M. A. R., Kowalczuk, M. V. R., Eliceche, M. L.,
Ferraresso, M. G., Luna, D. R., Benitez, S. E., and
Mazzuoccolo, L. D. (2023). A dataset of skin lesion
images collected in argentina for the evaluation of ai
tools in this population. Scientific Data, 10.
Messadi, M., Cherifi, H., and Bessaid, A. (2021). Segmen-
tation and abcd rule extraction for skin tumors classi-
fication.
Oliveira, R. B., Filho, M. E., Ma, Z., Papa, J. P., Pereira,
A. S., and Tavares, J. M. R. (2016). Computational
methods for the image segmentation of pigmented
skin lesions: A review.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Rao, B. K. and Ahn, C. S. (2012). Dermatoscopy for
melanoma and pigmented lesions.
Reddy, D. A., Roy, S., Kumar, S., and Tripathi, R. (2022). A
scheme for effective skin disease detection using opti-
mized region growing segmentation and autoencoder
based classification. In Procedia Computer Science,
volume 218, pages 274–282. Elsevier B.V.
Rojas, K. D., Perez, M. E., Marchetti, M. A., Nichols, A. J.,
Penedo, F. J., and Jaimes, N. (2022). Skin cancer:
Primary, secondary, and tertiary prevention. part ii.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Seeja, R. D. and Suresh, A. (2019). Deep learning
based skin lesion segmentation and classification of
melanoma using support vector machine (svm). Asian
Pacific Journal of Cancer Prevention, 20:1555–1561.
Society, C. C. (2019). Canadian cancer society.survival
statistics for non-melanoma skin cancer. [Accessed
12 August 2019].
Tong, X., Wei, J., Sun, B., Su, S., Zuo, Z., and Wu, P.
(2021). Ascu-net: Attention gate, spatial and channel
attention u-net for skin lesion segmentation. Diagnos-
tics, 11.
Vandaele, R., Nervo, G. A., and Gevaert, O. (2020). Topo-
logical image modification for object detection and
topological image processing of skin lesions. Scien-
tific Reports, 10.
Wang, Y., School, T. H., Sun, S., and School, J. Y. T. H.
(2018). Skin lesion segmentation using atrous convo-
lution via deeplab v3.
Xu, L., Jackowski, M., Goshtasby, A., Roseman, D., Bines,
S., Yu, C., Dhawan, A., and Huntley, A. (1999). Seg-
mentation of skin cancer images. Image and Vision
Computing, 17(1):65–74.
Yuan, Y., Chao, M., and Lo, Y. C. (2017). Automatic
skin lesion segmentation using deep fully convolu-
tional networks with jaccard distance. IEEE Trans-
actions on Medical Imaging, 36:1876–1886.
Zafar, M., Amin, J., Sharif, M., Anjum, M. A., Mal-
lah, G. A., and Kadry, S. (2023). Deeplabv3+-based
segmentation and best features selection using slime
mould algorithm for multi-class skin lesion classifica-
tion. Mathematics, 11.
A Real-World Segmentation Model for Melanocytic and Nonmelanocytic Dermoscopic Images
323