
REFERENCES
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. Advances in neural
information processing systems, 26.
Chen, W., Wan, H., Guo, S., Huang, H., Zheng, S., Li, J.,
Lin, S., and Lin, Y. (2022). Building and exploiting
spatial–temporal knowledge graph for next poi recom-
mendation. Knowledge-Based Systems, 258:109951.
Dasgupta, S. S., Ray, S. N., and Talukdar, P. P. (2018). Hyte:
Hyperplane-based temporally aware knowledge graph
embedding. In Conference on Empirical Methods in
Natural Language Processing.
Dong, H., Ning, Z., Wang, P., Qiao, Z., Wang, P., Zhou, Y.,
and Fu, Y. (2023). Adaptive path-memory network for
temporal knowledge graph reasoning. In Proceedings
of the Thirty-Second International Joint Conference
on Artificial Intelligence, pages 2086–2094.
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive sub-
gradient methods for online learning and stochastic
optimization. Journal of machine learning research,
12(7).
Garc
´
ıa-Dur
´
an, A., Dumancic, S., and Niepert, M. (2018).
Learning sequence encoders for temporal knowledge
graph completion. In Conference on Empirical Meth-
ods in Natural Language Processing.
Jain, P., Rathi, S., Chakrabarti, S., et al. (2020a). Tempo-
ral knowledge base completion: New algorithms and
evaluation protocols. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3733–3747.
Jain, P., Rathi, S., Mausam, and Chakrabarti, S. (2020b).
Temporal Knowledge Base Completion: New Algo-
rithms and Evaluation Protocols. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3733–3747.
Association for Computational Linguistics.
Lacroix, T., Obozinski, G., and Usunier, N. (2019). Tensor
decompositions for temporal knowledge base comple-
tion. In International Conference on Learning Repre-
sentations.
Lai, Y., Chen, C., Zheng, Z., and Zhang, Y. (2022). Block
term decomposition with distinct time granularities
for temporal knowledge graph completion. Expert
Systems with Applications, 201:117036.
Leblay, J. and Chekol, M. W. (2018). Deriving validity time
in knowledge graph. Companion Proceedings of the
The Web Conference 2018.
Li, Y., Zhang, X., Zhang, B., Huang, F., Chen, X., Lu, M.,
and Ma, S. (2024). Sane: Space adaptation network
for temporal knowledge graph completion. Informa-
tion Sciences, 667:120430.
Li, Z., Jin, X., Li, W., Guan, S., Guo, J., Shen, H., Wang,
Y., and Cheng, X. (2021). Temporal knowledge graph
reasoning based on evolutional representation learn-
ing. In Proceedings of the 44th international ACM
SIGIR conference on research and development in in-
formation retrieval, pages 408–417.
Mavromatis, C., Subramanyam, P. L., Ioannidis, V. N.,
Adeshina, A., Howard, P. R., Grinberg, T., Hakim, N.,
and Karypis, G. (2022). Tempoqr: temporal question
reasoning over knowledge graphs. In Proceedings of
the AAAI conference on artificial intelligence, pages
5825–5833.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.
Sadeghian, A., Armandpour, M., Colas, A., and Wang, D. Z.
(2021). Chronor: Rotation based temporal knowledge
graph embedding. In Proceedings of the AAAI confer-
ence on artificial intelligence, pages 6471–6479.
Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. (2019). Ro-
tate: Knowledge graph embedding by relational rota-
tion in complex space. In International Conference on
Learning Representations.
Trivedi, R., Dai, H., Wang, Y., and Song, L. (2017). Know-
evolve: Deep temporal reasoning for dynamic knowl-
edge graphs. In international conference on machine
learning, pages 3462–3471. PMLR.
Trouillon, T., Welbl, J., Riedel, S., Gaussier,
´
E., and
Bouchard, G. (2016). Complex embeddings for sim-
ple link prediction. In International conference on ma-
chine learning, pages 2071–2080. PMLR.
Wang, H., Yang, J., Yang, L. T., Gao, Y., Ding, J., Zhou, X.,
and Liu, H. (2024). Mvtucker: Multi-view knowledge
graphs representation learning based on tensor tucker
model. Information Fusion, 106:102249.
Xu, C., Chen, Y.-Y., Nayyeri, M., and Lehmann, J. (2021).
Temporal knowledge graph completion using a lin-
ear temporal regularizer and multivector embeddings.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2569–2578.
Xu, C., Nayyeri, M., Alkhoury, F., Shariat Yazdi, H., and
Lehmann, J. (2020). TeRo: A time-aware knowl-
edge graph embedding via temporal rotation. In
Proceedings of the 28th International Conference on
Computational Linguistics. International Committee
on Computational Linguistics.
Yang, J., Ying, X., Shi, Y., and Xing, B. (2024). Tensor
decompositions for temporal knowledge graph com-
pletion with time perspective. Expert Systems with
Applications, 237:121267.
Yu, M., Guo, J., Yu, J., Xu, T., Zhao, M., Liu, H., Li, X., and
Yu, R. (2023). Tbdri: block decomposition based on
relational interaction for temporal knowledge graph
completion. Applied Intelligence, 53(5):5072–5084.
Zhang, F., Chen, H., Shi, Y., Cheng, J., and Lin, J. (2024).
Joint framework for tensor decomposition-based tem-
poral knowledge graph completion. Information Sci-
ences, 654:119853.
Improving Temporal Knowledge Graph Completion via Tensor Decomposition with Relation-Time Context and Multi-Time Perspective
333