
Table 10: Obtained results for the CIC-IDS2017 dataset.
Dataset ML Classification Macro-averaged Macro-averaged Macro-averaged
Version Model Accuracy Precision Recall F1-Score
Original
Flows
RF 96.12 97.61 76.40 84.24
XGB 95.95 96.43 79.65 85.70
LGBM 92.68 89.31 79.01 82.90
EBM 95.44 95.30 74.92 82.64
HERA
Flows
RF 99.83 98.52 98.25 98.38
XGB 99.72 96.45 96.84 96.62
LGBM 94.18 92.07 91.90 90.86
EBM 99.35 95.36 91.55 93.21
REFERENCES
Dias, L. and Correia, M. (2020). Big Data Analytics for
Intrusion Detection In P. Ganapathi & D. Shanmu-
gapriya (Eds.), Handbook of Research on Machine
and Deep Learning Applications for Cyber Security,
chapter 14, pages 292–316. IGI Global.
Engelen, G., Rimmer, V., and Joosen, W. (2021). Trou-
bleshooting an intrusion detection dataset: the ci-
cids2017 case study. In 2021 IEEE Security and Pri-
vacy Workshops (SPW), pages 7–12. IEEE.
Gharib, A., Sharafaldin, I., Lashkari, A. H., and Ghorbani,
A. A. (2016). An evaluation framework for intrusion
detection dataset. In 2016 International Conference
on Information Science and Security (ICISS), pages
1–6. IEEE.
Kenyon, A., Deka, L., and Elizondo, D. (2020). Are pub-
lic intrusion datasets fit for purpose characterising the
state of the art in intrusion event datasets. Computers
and Security, 99. Elsevier Ltd.
Kilincer, I. F., Ertam, F., and Sengur, A. (2022). A compre-
hensive intrusion detection framework using boosting
algorithms. Computers and Electrical Engineering,
100:107869.
Lanvin, M., Gimenez, P.-F., Han, Y., Majorczyk, F., M
´
e,
L., and Totel, E. (2023). Errors in the CICIDS2017
dataset and the significant differences in detection per-
formances it makes. In Kallel S., Jmaiel M., Hadj
Kacem A., Zulkernine M., Cuppens F., and Cuppens
N., editors, Lect. Notes Comput. Sci., volume 13857
LNCS, pages 18–33. Springer Science and Business
Media Deutschland GmbH.
Liu, L., Engelen, G., Lynar, T., Essam, D., and Joosen, W.
(2022). Error prevalence in NIDS datasets: A case
study on CIC-IDS-2017 and CSE-CIC-IDS-2018. In
2022 IEEE Conference on Communications and Net-
work Security (CNS), pages 254–262. IEEE.
Maci
´
a-Fern
´
andez, G., Camacho, J., Mag
´
an-Carri
´
on, R.,
Garc
´
ıa-Teodoro, P., and Ther
´
on, R. (2018). UGR’16:
A new dataset for the evaluation of cyclostationarity-
based network IDSs. Computers and Security,
73:411–424. Elsevier.
Moustafa, N. and Slay, J. (2015). UNSW-NB15: a compre-
hensive data set for network intrusion detection sys-
tems (UNSW-NB15 network data set). In 2015 Mil-
itary Communications and Information Systems Con-
ference (MilCIS), pages 1–6. IEEE.
Panigrahi, R. and Borah, S. (2018). A detailed analysis
of CICIDS2017 dataset for designing intrusion detec-
tion systems. International Journal of Engineering &
Technology, 7:479–482. IJET.
Pinto, D. A. P. (2024). HERA: Enhancing Network Security
with a New Dataset Creation Tool. Master’s thesis,
Faculdade de Ci
ˆ
encias da Universidade do Porto.
Raju, D., Sawai, S., Gavel, S., and Raghuvanshi, A.
(2021). DEVELOPMENT OF ANOMALY-BASED
INTRUSION DETECTION SCHEME USING DEEP
LEARNING IN DATA NETWORK. In Int. Conf.
Comput. Commun. Netw. Technol., ICCCNT. Institute
of Electrical and Electronics Engineers Inc. Journal
Abbreviation: Int. Conf. Comput. Commun. Netw.
Technol., ICCCNT.
Rodr
´
ıguez, M., Alesanco, A., Mehavilla, L., and Garc
´
ıa, J.
(2022). Evaluation of Machine Learning Techniques
for Traffic Flow-Based Intrusion Detection. Sensors,
22:9326.
Rosay, A., Carlier, F., Cheval, E., and Leroux, P. (2021).
From CIC-IDS2017 to LYCOS-IDS2017: A corrected
dataset for better performance. In ACM Int. Conf.
Proc. Ser., pages 570–575. Association for Comput-
ing Machinery.
Rosay, A., Cheval, E., Carlier, F., and Leroux, P. (2022).
Network intrusion detection: A comprehensive analy-
sis of CIC-IDS2017. In Mori, P., Lenzini, G., and Fur-
nell, S., editors, Proceedings of the 8th International
Conference on Information Systems Security and Pri-
vacy (ICISSP), pages 25–36. SciTePress.
Sarhan, M., Layeghy, S., and Portmann, M. (2022). To-
wards a standard feature set for network intrusion de-
tection system datasets. Mobile Networks and Appli-
cations, 27(1):357–370. Springer.
Sharafaldin, I., Lashkari, A., and Ghorbani, A. (2018). To-
ward generating a new intrusion detection dataset and
intrusion traffic characterization. In Mori P., Furnell
S., and Camp O., editors, ICISSP - Proc. Int. Conf.
Inf. Syst. Secur. Priv., pages 108–116. SciTePress.
Stolfo, S., Fan, W., Lee, W., Prodromidis, A., and Chan,
P. (2000). Cost-based modeling for fraud and in-
trusion detection: results from the JAM project. In
Proceedings DARPA Information Survivability Con-
Flow Exporter Impact on Intelligent Intrusion Detection Systems
297