
Frassineti, L., Cal
`
a, F., Sforza, E., Onesimo, R., Leoni, C.,
Lanat
`
a, A., Zampino, G., and Manfredi, C. (2023).
Quantitative acoustical analysis of genetic syndromes
in the number listing task. Biomed Sig Process Con-
trol, 85:104887. doi: 10.1016/j.bspc.2023.104887.
G
´
omez-Garc
´
ıa, J. A., Moro-Vel
´
azquez, L., and Godino-
Llorente, J. I. (2019). On the design of auto-
matic voice condition analysis systems. Part I: Re-
view of concepts and an insight to the state of the
art. Biomed Sig Process Control, 51:181–199. doi:
10.1016/j.bspc.2018.12.024.
G
¨
ur
¨
uler, H. (2017). A novel diagnosis system for parkin-
son’s disease using complex-valued artificial neural
network with k-means clustering feature weighting
method. Neural Comput App, 28:1657–1666.
Hamdan, A.-L., Jabbour, C., Khalifee, E., Ghanem, A., and
El Hage, A. (2023). Tolerance of patients using differ-
ent approaches in laryngeal office-based procedures. J
Voice, 37(2):263–267.
Hariharan, M., Polat, K., and Yaacob, S. (2014). A new fea-
ture constituting approach to detection of vocal fold
pathology. IJSS, 45(8):1622–1634.
Herrington-Hall, B. L., Lee, L., Stemple, J. C., Niemi,
K. R., and McHone, M. M. (1988). Description of
laryngeal pathologies by age, sex, and occupation in
a treatment-seeking sample. J Speech Hear Disord,
53(1):57–64. doi: 10.1044/jshd.5301.57.
Hirano, M. (1981). Clinical examination of voice. Disor-
ders of human communication, 5:1–99. ISSN 0173-
170X.
Hu, H.-C., Chang, S.-Y., Wang, C.-H., Li, K.-J., Cho,
H.-Y., Chen, Y.-T., Lu, C.-J., Tsai, T.-P., and Lee,
O. K.-S. (2021). Deep learning application for vo-
cal fold disease prediction through voice recognition:
preliminary development study. J Med Internet Res,
23(6):e25247.
Jalali-Najafabadi, F., Gadepalli, C., Jarchi, D., and
Cheetham, B. M. (2021). Acoustic analysis and digital
signal processing for the assessment of voice quality.
Biomed Sig Process Control, 70:103018.
Low, D. M., Rao, V., Randolph, G., Song, P. C., and Ghosh,
S. S. (2024). Identifying bias in models that detect vo-
cal fold paralysis from audio recordings using explain-
able machine learning and clinician ratings. PLOS
Digit Health, 3(5):e0000516.
Manfredi, C., Bandini, A., Melino, D., Viellevoye, R.,
Kalenga, M., and Orlandi, S. (2018). Automated de-
tection and classification of basic shapes of newborn
cry melody. Biomed Sig Process Control, 45:174–181.
Morelli, M. S., Orlandi, S., and Manfredi, C. (2021).
Biovoice: A multipurpose tool for voice analysis.
Biomed Sig Process Control, 64:102302.
Ni
˜
no-Adan, I., Manjarres, D., Landa-Torres, I., and Portillo,
E. (2021). Feature weighting methods: A review. Ex-
pert Syst Appl, 184:115424.
Robotti, C., Costantini, G., Saggio, G., Cesarini, V., Calas-
tri, A., Maiorano, E., Piloni, D., Perrone, T., Sabatini,
U., Ferretti, V. V., et al. (2021). Machine learning-
based voice assessment for the detection of positive
and recovered covid-19 patients. J Voice.
Rusz, J., Tykalova, T., Novotny, M., Zogala, D., Sonka,
K., Ruzicka, E., and Dusek, P. (2021). Defining
speech subtypes in de novo parkinson disease: re-
sponse to long-term levodopa therapy. Neurology,
97(21):e2124–e2135.
Saigusa, H., Saigusa, M., Aino, I., Iwasaki, C., Li, L., and
Niimi, S. (2006). M-mode color doppler ultrasonic
imaging of vertical tongue movement during articula-
tory movement. J Voice, 20(1):38–45.
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P.,
Tiwari, A., Er, M. J., Ding, W., and Lin, C.-T. (2017).
A review of clustering techniques and developments.
Neurocomputing, 267:664–681.
Sebastian, A., Cistulli, P. A., Cohen, G., and de Chazal,
P. (2021). Association of snoring characteristics with
predominant site of collapse of upper airway in ob-
structive sleep apnea patients. Sleep, 44(12):zsab176.
Shembel, A. C., Lee, J., Sacher, J. R., and Johnson, A. M.
(2023). Characterization of primary muscle tension
dysphonia using acoustic and aerodynamic voice met-
rics. J Voice, 37(6):897–906.
Tsanas, A. and Arora, S. (2022). Data-driven subtyping of
parkinson’s using acoustic analysis of sustained vow-
els and cluster analysis: findings in the parkinson’s
voice initiative study. SN Comput Sci, 3(3):232.
Verde, L., De Pietro, G., Ghoneim, A., Alrashoud, M., Al-
Mutib, K. N., and Sannino, G. (2021). Exploring the
use of artificial intelligence techniques to detect the
presence of coronavirus covid-19 through speech and
voice analysis. Ieee Access, 9:65750–65757.
Wang, C.-P., Chen, T.-C., Lou, P.-J., Yang, T.-L., Hu, Y.-L.,
Shieh, M.-J., Ko, J.-Y., and Hsiao, T.-Y. (2012). Neck
ultrasonography for the evaluation of the etiology of
adult unilateral vocal fold paralysis. Head & neck,
34(5):643–648.
Xu, R. and Wunsch, D. (2005). Survey of clustering
algorithms. IEEE Trans Neural Netw Learn Syst,
16(3):645–678.
Za’im, N. A. N., Al-Dhief, F. T., Azman, M., Alsemawi,
M. R. M., Abdul Latiff, N. M. a., and Mat Baki, M.
(2023). The accuracy of an online sequential extreme
learning machine in detecting voice pathology using
the malaysian voice pathology database. Otolaryngol
Head Neck Surg, 52(1):s40463–023.
Unveiling Vocal Phenotypes of Dysphonia with Unsupervised Learning
867