
transactions on visualization and computer graphics,
23(11):2378–2388.
Boyd, C. (1997). Does immersion make a virtual environ-
ment more usable? In CHI’97 Extended Abstracts
on Human Factors in Computing Systems, pages 325–
326.
Brooke, J. et al. (1996). Sus-a quick and dirty usability
scale. Usability evaluation in industry, 189(194):4–7.
Carlier, S., Van der Paelt, S., Ongenae, F., De Backere, F.,
and De Turck, F. (2020). Empowering children with
asd and their parents: design of a serious game for
anxiety and stress reduction. Sensors, 20(4):966.
Ehioghae, M., Montoya, A., Keshav, R., Vippa, T. K.,
Manuk-Hakobyan, H., Hasoon, J., Kaye, A. D., and
Urits, I. (2024). Effectiveness of virtual reality–based
rehabilitation interventions in improving postopera-
tive outcomes for orthopedic surgery patients. Current
Pain and Headache Reports, 28(1):37–45.
Garzotto, F., Gianotti, M., Patti, A., Pentimalli, F., and
Vona, F. (2024). Empowering persons with autism
through cross-reality and conversational agents. IEEE
Transactions on Visualization and Computer Graph-
ics.
Gonzalez-Franco, M. and Peck, T. C. (2018). Avatar
embodiment. towards a standardized questionnaire.
Frontiers in Robotics and AI, 5:74.
Hart, S. G. (2006). Nasa-task load index (nasa-tlx); 20 years
later. In Proceedings of the human factors and er-
gonomics society annual meeting, volume 50, pages
904–908. Sage publications Sage CA: Los Angeles,
CA.
Hart, S. G. and Staveland, L. E. (1988). Development of
nasa-tlx (task load index): Results of empirical and
theoretical research. In Advances in psychology, vol-
ume 52, pages 139–183. Elsevier.
Hartmann, T., Wirth, W., Schramm, H., Klimmt, C.,
Vorderer, P., Gysbers, A., B
¨
ocking, S., Ravaja, N.,
Laarni, J., Saari, T., et al. (2015). The spatial presence
experience scale (spes). Journal of Media Psychology.
Landers, R. N. (2014). Developing a theory of gamified
learning: Linking serious games and gamification of
learning. Simulation & gaming, 45(6):752–768.
Lee, J., Phu, S., Lord, S., and Okubo, Y. (2024). Effects
of immersive virtual reality training on balance, gait
and mobility in older adults: a systematic review and
meta-analysis. Gait & Posture.
Malihi, M., Nguyen, J., Cardy, R. E., Eldon, S., Petta, C.,
and Kushki, A. (2020). Evaluating the safety and
usability of head-mounted virtual reality compared
to monitor-displayed video for children with autism
spectrum disorder. Autism, 24(7):1924–1929.
Pallavicini, F., Pepe, A., and Minissi, M. E. (2019). Gaming
in virtual reality: What changes in terms of usability,
emotional response and sense of presence compared
to non-immersive video games? Simulation & Gam-
ing, 50(2):136–159.
Rao, A. K., Choudhary, G., Negi, R., and Dutt, V. (2023).
Is virtual reality better than desktop-based cognitive
training? A neurobehavioral evaluation of visual pro-
cessing and transfer performance. In Bruder, G.,
Olivier, A., Cunningham, A., Peng, Y. E., Grubert, J.,
and Williams, I., editors, IEEE International Sympo-
sium on Mixed and Augmented Reality Adjunct, IS-
MAR 2023, Sydney, Australia, October 16-20, 2023,
pages 308–314. IEEE.
Ren, Y., Wang, Q., Liu, H., Wang, G., and Lu, A.
(2024). Effects of immersive and non-immersive vir-
tual reality-based rehabilitation training on cognition,
motor function, and daily functioning in patients with
mild cognitive impairment or dementia: A system-
atic review and meta-analysis. Clinical Rehabilita-
tion, 38(3):305–321.
Schubert, T., Friedmann, F., and Regenbrecht, H. (2001).
The experience of presence: Factor analytic insights.
Presence: Teleoperators & Virtual Environments,
10(3):266–281.
Slater, M., Banakou, D., Beacco, A., Gallego, J., Macia-
Varela, F., and Oliva, R. (2022). A separate reality:
An update on place illusion and plausibility in virtual
reality. Frontiers in virtual reality, 3:914392.
Solari, F., Chessa, M., Garibotti, M., and Sabatini, S. P.
(2013). Natural perception in dynamic stereo-
scopic augmented reality environments. Displays,
34(2):142–152.
Souchet, A. D., Diallo, M. L., and Lourdeaux, D. (2022).
Cognitive load classification with a stroop task in vir-
tual reality based on physiological data. In Duh, H.
B. L., Williams, I., Grubert, J., Jones, J. A., and
Zheng, J., editors, IEEE International Symposium on
Mixed and Augmented Reality, ISMAR 2022, Singa-
pore, October 17-21, 2022, pages 656–666. IEEE.
Sud
´
ar, A. and Csap
´
o,
´
A. B. (2024). Comparing desktop 3d
virtual reality with web 2.0 interfaces: Identifying key
factors behind enhanced user capabilities. Heliyon.
Viola, E., Martini, M., Solari, F., and Chessa, M. (2024).
Immerse: Immersive environment for representing
self-avatar easily. In 2024 IEEE Gaming, Enter-
tainment, and Media Conference (GEM), pages 1–6.
IEEE.
Wenk, N., Buetler, K. A., Penalver-Andres, J., M
¨
uri, R. M.,
and Marchal-Crespo, L. (2022). Naturalistic visual-
ization of reaching movements using head-mounted
displays improves movement quality compared to
conventional computer screens and proves high us-
ability. Journal of NeuroEngineering and Rehabili-
tation, 19(1):137.
Wenk, N., Penalver-Andres, J., Buetler, K. A., Nef, T.,
M
¨
uri, R. M., and Marchal-Crespo, L. (2023). Effect
of immersive visualization technologies on cognitive
load, motivation, usability, and embodiment. Virtual
Reality, 27(1):307–331.
Wenk, N., Penalver-Andres, J., Palma, R., Buetler, K. A.,
M
¨
uri, R., Nef, T., and Marchal-Crespo, L. (2019).
Reaching in several realities: motor and cognitive
benefits of different visualization technologies. In
2019 IEEE 16th International Conference on Rehabil-
itation Robotics (ICORR), pages 1037–1042. IEEE.
HUCAPP 2025 - 9th International Conference on Human Computer Interaction Theory and Applications
568