
the annotation process to better capture the evolving
nature of human emotions, especially within sponta-
neous speech. This will involve exploring alternative
annotation methods, such as dimensional annotation,
which can provide a more nuanced understanding of
emotional subtleties. Specifically, we aim to adopt
finer granularity in our annotation to detect overlap-
ping emotions, such as disgust and anger. We also
plan to extend the applicability of our dataset beyond
its current scope. By collaborating with experts from
various fields, we aim to explore how our annotated
corpus can be utilized to advance research in areas
such as NLP, affective computing, and cultural stud-
ies.
Furthermore, we will continue to investigate po-
tential real-world applications for our dataset, includ-
ing its use in developing emotion recognition sys-
tems, improving human-computer interaction inter-
faces, and facilitating cross-cultural communication.
REFERENCES
Alamri, H. et al. (2023). Emotion recognition in arabic
speech from saudi dialect corpus using machine learn-
ing and deep learning algorithms.
Aljuhani, R. H., Alshutayri, A., and Alahdal, S. (2021).
Arabic speech emotion recognition from saudi dialect
corpus. IEEE Access, 9:127081–127085.
Besdouri, F. Z., Zribi, I., and Belguith, L. H. (2024). Chal-
lenges and progress in developing speech recognition
systems for dialectal arabic. Speech Communication,
page 103110.
Boughariou, E., Bahou, Y., and Belguith, L. H. (2021).
Classification based method for disfluencies detection
in spontaneous spoken tunisian dialect. In Intelligent
Systems and Applications: Proceedings of the 2020
Intelligent Systems Conference (IntelliSys) Volume 2,
pages 182–195. Springer.
Boukadida, N. (2008). Connaissances phonologiques et
morphologiques d
´
erivationnelles et apprentissage de
la lecture en arabe (Etude longitudinale). PhD thesis,
Universit
´
e Rennes 2; Universit
´
e de Tunis.
Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower,
E., Kim, S., Chang, J. N., Lee, S., and Narayanan,
S. S. (2008). Iemocap: Interactive emotional dyadic
motion capture database. Language resources and
evaluation, 42:335–359.
Ekman, P. (1992). Are there basic emotions?
El Seknedy, M. and Fawzi, S. A. (2022). Emotion recog-
nition system for arabic speech: Case study egyptian
accent. In International conference on model and data
engineering, pages 102–115. Springer.
Gannouni, S., Aledaily, A., Belwafi, K., and Aboalsamh, H.
(2020). Adaptive emotion detection using the valence-
arousal-dominance model and eeg brain rhythmic ac-
tivity changes in relevant brain lobes. IEEE Access,
8:67444–67455.
Gibson, M. L. (1999). Dialect contact in Tunisian Ara-
bic: sociolinguistic and structural aspects. PhD the-
sis, University of Reading.
Goncalves, L., Salman, A. N., Naini, A. R., Velazquez,
L. M., Thebaud, T., Garcia, L. P., Dehak, N., Sisman,
B., and Busso, C. (2024). Odyssey 2024-speech emo-
tion recognition challenge: Dataset, baseline frame-
work, and results. Development, 10(9,290):4–54.
Gwet, K. L. (2021). Large-sample variance of fleiss gen-
eralized kappa. Educational and Psychological Mea-
surement, 81(4):781–790.
Iben Nasr, L., Masmoudi, A., and Hadrich Belguith, L.
(2024). Survey on arabic speech emotion recogni-
tion. International Journal of Speech Technology,
27(1):53–68.
Jackson, P. and Haq, S. (2014). Surrey audio-visual ex-
pressed emotion (savee) database. University of Sur-
rey: Guildford, UK.
Macary, M., Tahon, M., Est
`
eve, Y., and Rousseau, A.
(2020). Allosat: A new call center french corpus for
satisfaction and frustration analysis. In Language Re-
sources and Evaluation Conference, LREC 2020.
Masmoudi, A., Bougares, F., Ellouze, M., Est
`
eve, Y., and
Belguith, L. (2018). Automatic speech recognition
system for tunisian dialect. Language Resources and
Evaluation, 52:249–267.
Meddeb, M., Karray, H., and Alimi, A. M. (2016). Au-
tomated extraction of features from arabic emotional
speech corpus. International Journal of Computer In-
formation Systems and Industrial Management Appli-
cations, 8:11–11.
Meftah, A., Qamhan, M., Alotaibi, Y. A., and Zakariah,
M. (2020). Arabic speech emotion recognition using
knn and ksuemotions corpus. International Journal of
Simulation–Systems, Science & Technology, 21(2):1–
5.
Messaoudi, A., Haddad, H., Hmida, M. B., and Graiet, M.
(2022). Tuniser: Toward a tunisian speech emotion
recognition system. In Proceedings of the 5th Inter-
national Conference on Natural Language and Speech
Processing (ICNLSP 2022), pages 234–241.
Nasr, L. I., Masmoudi, A., and Belguith, L. H. (2023). Nat-
ural tunisian speech preprocessing for features extrac-
tion. In 2023 IEEE/ACIS 23rd International Confer-
ence on Computer and Information Science (ICIS),
pages 73–78. IEEE.
Plutchik, R. (1980). A general psychoevolutionary theory of
emotion. Emotion: Theory, research, and experience,
1.
Ringeval, F., Sonderegger, A., Sauer, J., and Lalanne, D.
(2013). Introducing the recola multimodal corpus of
remote collaborative and affective interactions. In
2013 10th IEEE international conference and work-
shops on automatic face and gesture recognition (FG),
pages 1–8. IEEE.
Zribi, I., Boujelbane, R., Masmoudi, A., Ellouze, M., Bel-
guith, L. H., and Habash, N. (2014). A conven-
tional orthography for tunisian arabic. In LREC, pages
2355–2361.
Tunisian Dialect Speech Corpus: Construction and Emotion Annotation
367