
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9592–9600.
Bogdoll, D., Nitsche, M., and Z
¨
ollner, J. M. (2022).
Anomaly detection in autonomous driving: A sur-
vey. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4488–
4499.
Cao, Y., Xu, X., Zhang, J., Cheng, Y., Huang, X., Pang,
G., and Shen, W. (2024). A survey on visual anomaly
detection: Challenge, approach, and prospect. arXiv
preprint arXiv:2401.16402.
Cohen, N. and Hoshen, Y. (2020). Sub-image anomaly
detection with deep pyramid correspondences. arXiv
preprint arXiv:2005.02357.
Defard, T., Setkov, A., Loesch, A., and Audigier, R. (2021).
Padim: a patch distribution modeling framework for
anomaly detection and localization. In International
Conference on Pattern Recognition, pages 475–489.
Dini., A., Mett
¨
anen., M., and Rahtu., E. (2024). Anomaly
detection and localization for images of running pa-
per web in paper manufacturing. In Proceedings of
the 19th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and
Applications - Volume 2: VISAPP, pages 678–685.
Dini, A. and Rahtu, E. (2022). Tpsad: Learning to detect
and localize anomalies with thin plate spline transfor-
mation. In 2022 26th International Conference on
Pattern Recognition (ICPR), pages 4744–4750. IEEE.
Dini, A. and Rahtu, E. (2023). Visual anomaly detec-
tion and localization with a patch-wise transformer
and convolutional model. In International Joint Con-
ference on Computer Vision, Imaging and Computer
Graphics Theory and Applications.
Dini, A. and Rahtu, E. (2024). Detecting anomalies in tex-
tured images using modified transformer masked au-
toencoder. In International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory
and Applications, pages 191–200. Science and Tech-
nology Publications (SciTePress).
Edstedt, J., B
¨
okman, G., Wadenb
¨
ack, M., and Felsberg, M.
(2024). Dedode: Detect, don’t describe—describe,
don’t detect for local feature matching. In 2024 In-
ternational Conference on 3D Vision, pages 148–157.
Hojjati, H., Ho, T. K. K., and Armanfard, N. (2024). Self-
supervised anomaly detection in computer vision and
beyond: A survey and outlook. Neural Networks, page
106106.
Kim, J.-H., Kim, D.-H., Yi, S., and Lee, T. (2021).
Semi-orthogonal embedding for efficient unsuper-
vised anomaly segmentation. arXiv preprint
arXiv:2105.14737.
Li, H. and Li, Y. (2023). Anomaly detection methods based
on gan: a survey. Applied Intelligence, 53(7):8209–
8231.
Liang, Y., Zhang, J., Zhao, S., Wu, R., Liu, Y., and Pan,
S. (2023). Omni-frequency channel-selection repre-
sentations for unsupervised anomaly detection. IEEE
Transactions on Image Processing.
Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F.,
and Jin, Y. (2024). Deep industrial image anomaly
detection: A survey. Machine Intelligence Research,
21(1):104–135.
Liu, T., Li, B., Zhao, Z., Du, X., Jiang, B., and Geng,
L. (2022). Reconstruction from edge image com-
bined with color and gradient difference for in-
dustrial surface anomaly detection. arXiv preprint
arXiv:2210.14485.
Liu, Z., Zhou, Y., Xu, Y., and Wang, Z. (2023). Simplenet:
A simple network for image anomaly detection and
localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 20402–20411.
Mahalanobis, P. C. (2018). On the generalized distance in
statistics. Sankhy
¯
a: The Indian Journal of Statistics,
Series A (2008-), 80:S1–S7.
Mohammadi, B., Fathy, M., and Sabokrou, M. (2021). Im-
age/video deep anomaly detection: A survey. arXiv
preprint arXiv:2103.01739.
Palakurti, N. R. (2024). Challenges and future directions in
anomaly detection. In Practical Applications of Data
Processing, Algorithms, and Modeling, pages 269–
284. IGI Global.
Pirnay, J. and Chai, K. (2022). Inpainting transformer for
anomaly detection. In International Conference on
Image Analysis and Processing, pages 394–406.
Rippel, O. and Merhof, D. (2023). Anomaly detection for
automated visual inspection: A review. Bildverar-
beitung in der Automation: Ausgew
¨
ahlte Beitr
¨
age des
Jahreskolloquiums BVAu 2022, pages 1–13.
Roth, K., Pemula, L., Zepeda, J., Sch
¨
olkopf, B., Brox,
T., and Gehler, P. (2022). Towards total recall in
industrial anomaly detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 14318–14328.
Rudolph, M., Wehrbein, T., Rosenhahn, B., and Wandt,
B. (2023). Asymmetric student-teacher networks for
industrial anomaly detection. In Proceedings of the
IEEE/CVF winter conference on applications of com-
puter vision, pages 2592–2602.
Xie, G., Wang, J., Liu, J., Lyu, J., Liu, Y., Wang, C.,
Zheng, F., and Jin, Y. (2024). Im-iad: Industrial im-
age anomaly detection benchmark in manufacturing.
IEEE Transactions on Cybernetics.
Yang, J., Xu, R., Qi, Z., and Shi, Y. (2022). Visual anomaly
detection for images: A systematic survey. Procedia
computer science, 199:471–478.
Yi, J. and Yoon, S. (2020). Patch svdd: Patch-level svdd for
anomaly detection and segmentation. In Proceedings
of the Asian conference on computer vision.
Zagoruyko, S. (2016). Wide residual networks. arXiv
preprint arXiv:1605.07146.
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2021a). Draem-
a discriminatively trained reconstruction embedding
for surface anomaly detection. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 8330–8339.
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2021b). Recon-
struction by inpainting for visual anomaly detection.
Pattern Recognition, 112:107706.
Zhang, Z. and Deng, X. (2021). Anomaly detection using
improved deep svdd model with data structure preser-
vation. Pattern Recognition Letters, 148:1–6.
Deep Local Feature Matching Image Anomaly Detection with Patch Adaptive Average Pooling Technique
339