
Droste, S. (1997). Efficient genetic programming for find-
ing good generalizing Boolean functions. In Koza,
J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzo, M.,
Iba, H., and Riolo, R. L., editors, Proceedings of the
Second Annual Conference on Genetic Programming,
pages 82–87, San Francisco, Calif. Morgan Kaufmann
Publishers, Inc.
Florio, A., Martins, P., Schiffer, M., Serra, T., and Vidal,
T. (2023). Optimal decision diagrams for classifi-
cation. In Williams, B., Chen, Y., and Neville, J.,
editors, AAAI-23 Technical Tracks 6, Proceedings of
the 37th AAAI Conference on Artificial Intelligence,
AAAI 2023, pages 7577–7585. AAAI Press.
Garte, S. (2001). Metabolic Susceptibility Genes As Cancer
Risk Factors: Time for a Reassessment? Cancer Epi-
demiology, Biomarkers & Prevention, 10(12):1233–
1237.
Hu, H., Huguet, M.-J., and Siala, M. (2022). Optimizing bi-
nary decision diagrams with maxsat for classification.
Proceedings of the AAAI Conference on Artificial In-
telligence, 36:3767–3775.
International Human Genome Sequencing Consortium
(2001). Initial sequencing and analysis of the human
genome. Nature, 409(6822):860–921.
Lau, M., Schikowski, T., and Schwender, H. (2024). log-
icDT: a procedure for identifying response-associated
interactions between binary predictors. Machine
Learning, 113(2):933–992.
Lau, M., Wigmann, C., Kress, S., Schikowski, T., and
Schwender, H. (2022). Evaluation of tree-based sta-
tistical learning methods for constructing genetic risk
scores. BMC Bioinformatics, 23(1):97.
Nunkesser, R. (2008). Analysis of a genetic program-
ming algorithm for association studies. In GECCO
’08: Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, pages 1259–
1266, New York. ACM.
Nunkesser, R., Bernholt, T., Schwender, H., Ickstadt, K.,
and Wegener, I. (2007). Detecting high-order in-
teractions of single nucleotide polymorphisms using
genetic programming. Bioinformatics, 23(24):3280–
3288.
Ruczinski, I., Kooperberg, C., and L. LeBlanc, M. (2004).
Exploring interactions in high-dimensional genomic
data: an overview of logic regression, with applica-
tions. Journal of Multivariate Analysis, 90(1):178–
195.
Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L.,
and Zhong, C. (2022). Interpretable machine learn-
ing: Fundamental principles and 10 grand challenges.
Statistics Surveys, 16:1 – 85.
Schwender, H. and Fritsch, A. (2018). scrime: Analysis
of High-Dimensional Categorical Data such as SNP
Data. R package version 1.3.5.
Schwender, H. and Ickstadt, K. (2007). Identification of
SNP interactions using logic regression. Biostatistics,
9(1):187–198.
Tong, H., Küken, A., Razaghi-Moghadam, Z., and
Nikoloski, Z. (2021). Characterization of effects
of genetic variants via genome-scale metabolic mod-
elling. Cellular and Molecular Life Sciences,
78(12):5123–5138.
Wegener, I. (2000). Branching Programs and Binary Deci-
sion Diagrams. SIAM, Philadelphia.
Winham, S. J., Colby, C. L., Freimuth, R. R., Wang,
X., de Andrade, M., Huebner, M., and Biernacka,
J. M. (2012). SNP interaction detection with Random
Forests in high-dimensional genetic data. BMC Bioin-
formatics, 13(1):164.
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
562