
tems and Control Conference, volume 50695, page
V001T16A003. American Society of Mechanical En-
gineers.
Best, M. C. (2014). A new empirical ‘exponential’ tyre
model. International Journal of Vehicle Design. Pub-
lisher: Inderscience Publishers Ltd.
Dieter, S., Manfred, H., and Roberto, B. (2018). Vehicle
dynamics: modeling and simulation.
Dutta, R. G., Yu, F., Zhang, T., Hu, Y., and Jin, Y. (2018).
Security for Safety: A Path Toward Building Trusted
Autonomous Vehicles. In 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (IC-
CAD), pages 1–6. ISSN: 1558-2434.
Guo, L., Ye, J., and Yang, B. (2021). Cyberattack Detection
for Electric Vehicles Using Physics-Guided Machine
Learning. IEEE Transactions on Transportation Elec-
trification, 7(3):2010–2022.
Han, M. L., Kwak, B. I., and Kim, H. K. (2018). Anomaly
intrusion detection method for vehicular networks
based on survival analysis. Vehicular Communica-
tions, 14:52–63.
He, X., Hashemi, E., and Johansson, K. H. (2021). Dis-
tributed control under compromised measurements:
Resilient estimation, attack detection, and vehicle pla-
tooning. Automatica, 134:109953.
Henning, K.-U. and Sawodny, O. (2016). Vehicle dynamics
modelling and validation for online applications and
controller synthesis. Mechatronics, 39:113–126.
Hossain, M. D., Inoue, H., Ochiai, H., Fall, D., and
Kadobayashi, Y. (2020). LSTM-Based Intrusion De-
tection System for In-Vehicle Can Bus Communica-
tions. IEEE access : practical innovations, open solu-
tions, 8:185489–185502.
Javed, A. R., ur Rehman, S., Khan, M. U., Alazab, M.,
and G, T. R. (2021). CANintelliIDS: Detecting In-
Vehicle Intrusion Attacks on a Controller Area Net-
work Using CNN and Attention-Based GRU. IEEE
Transactions on Network Science and Engineering,
8(2):1456–1466.
Ju, Z., Zhang, H., Li, X., Chen, X., Han, J., and Yang, M.
(2022). A Survey on Attack Detection and Resilience
for Connected and Automated Vehicles: From Vehi-
cle Dynamics and Control Perspective. IEEE Trans-
actions on Intelligent Vehicles, 7(4):815–837.
Ju, Z., Zhang, H., and Tan, Y. (2020). Distributed Deception
Attack Detection in Platoon-Based Connected Vehicle
Systems. IEEE Transactions on Vehicular Technol-
ogy, 69(5):4609–4620.
Keller, J.-Y. and Darouach, M. (1997). Optimal two-stage
Kalman filter in the presence of random bias. Auto-
matica, 33(9):1745–1748. Publisher: Elsevier.
Lin, H.-C., Wang, P., Chao, K.-M., Lin, W.-H., and Chen,
J.-H. (2022). Using Deep Learning Networks to
Identify Cyber Attacks on Intrusion Detection for In-
Vehicle Networks. Electronics, 11(14):2180. Pub-
lisher: Multidisciplinary Digital Publishing Institute.
Lo, W., Alqahtani, H., Thakur, K., Almadhor, A., Chan-
der, S., and Kumar, G. (2022). A hybrid deep learn-
ing based intrusion detection system using spatial-
temporal representation of in-Vehicle network traffic.
Vehicular Communications, 35:100471. Publisher:
Elsevier.
Lokman, S.-F., Othman, A. T., and Abu-Bakar, M.-H.
(2019). Intrusion detection system for automotive
Controller Area Network (CAN) bus system: a review.
EURASIP Journal on Wireless Communications and
Networking, 2019(1):184.
May, M. P., Henning, K.-U., and Sawodny, O. (2023). Ex-
perimental validation of sensor fault estimation for ve-
hicle dynamics with a nonlinear tire model. Control
Engineering Practice, 141:105725.
Mwanje, M. D., Kaiwartya, O., Aljaidi, M., Cao, Y., Ku-
mar, S., Jha, D. N., Naser, A., and Lloret, J. (2024).
Cyber security analysis of connected vehicles. IET
Intelligent Transport Systems.
Pacejka, H. B. (2012). Semi-Empirical Tire Models. Tire
and Vehicle Dynamics, pages 149–209. Publisher: El-
sevier.
Tan, R., Nguyen, H. H., Foo, E. Y. S., Yau, D. K. Y.,
Kalbarczyk, Z., Iyer, R. K., and Gooi, H. B. (2017).
Modeling and Mitigating Impact of False Data Injec-
tion Attacks on Automatic Generation Control. IEEE
Transactions on Information Forensics and Security,
12(7):1609–1624.
Wang, Y., Masoud, N., and Khojandi, A. (2020). Real-time
sensor anomaly detection and recovery in connected
automated vehicle sensors. IEEE transactions on
intelligent transportation systems, 22(3):1411–1421.
Publisher: IEEE.
Zhang, L. and Ma, D. (2022). A Hybrid Approach To-
ward Efficient and Accurate Intrusion Detection for
In-Vehicle Networks. IEEE access : practical inno-
vations, open solutions, 10:10852–10866.
VEHITS 2025 - 11th International Conference on Vehicle Technology and Intelligent Transport Systems
308