
Huang, Z., Xue, D., Shen, X., Tian, X., Li, H., Huang, J.,
and Hua, X.-S. (2021). 3d local convolutional neural
networks for gait recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 14920–14929.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1125–1134.
Iwashita, Y., Ogawara, K., and Kurazume, R. (2014). Iden-
tification of people walking along curved trajectories.
Pattern Recognition Letters, 48:60–69.
Li, H., Qiu, Y., Zhao, H., Zhan, J., Chen, R., Wei, T.,
and Huang, Z. (2022). Gaitslice: A gait recognition
model based on spatio-temporal slice features. Pat-
tern Recognition, 124:108453.
Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S., and Ren,
M. (2020). End-to-end model-based gait recognition.
In Proceedings of the Asian conference on computer
vision.
Liao, R., Yu, S., An, W., and Huang, Y. (2020). A
model-based gait recognition method with body pose
and human prior knowledge. Pattern Recognition,
98:107069.
Ramachandran, P., Zoph, B., and Le, Q. V. (2017).
Searching for activation functions. arXiv preprint
arXiv:1710.05941.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115:211–252.
Saleem, F., Khan, M. A., Alhaisoni, M., Tariq, U., Ar-
mghan, A., Alenezi, F., Choi, J.-I., and Kadry, S.
(2021). Human gait recognition: A single stream
optimal deep learning features fusion. Sensors,
21(22):7584.
Talal, E. B., Oraibi, Z. A., and Wali, A. (2023). Gait recog-
nition using deep residual networks and conditional
generative adversarial networks. In 2023 IEEE 47th
Annual Computers, Software, and Applications Con-
ference (COMPSAC), pages 1179–1185. IEEE.
Tan, M. (2019). Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint
arXiv:1905.11946.
Tan, M. and Le, Q. (2021). Efficientnetv2: Smaller mod-
els and faster training. In International conference on
machine learning, pages 10096–10106. PMLR.
Wang, X. and Yan, W. Q. (2020). Human gait recogni-
tion based on frame-by-frame gait energy images and
convolutional long short-term memory. International
journal of neural systems, 30(01):1950027.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural net-
works? Advances in neural information processing
systems, 27.
Yu, S., Chen, H., Garcia Reyes, E. B., and Poh, N.
(2017). Gaitgan: Invariant gait feature extraction us-
ing generative adversarial networks. In Proceedings of
the IEEE conference on computer vision and pattern
recognition workshops, pages 30–37.
Yu, S., Tan, D., and Tan, T. (2006). A framework for eval-
uating the effect of view angle, clothing and carry-
ing condition on gait recognition. In 18th interna-
tional conference on pattern recognition (ICPR’06),
volume 4, pages 441–444. IEEE.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
346