
REFERENCES
Ahamad, A., Sun, C.-C., and Kuo, W.-K. (2022). Quan-
tized Semantic Segmentation Deep Architecture for
Deployment on an Edge Computing Device for Image
Segmentation. Electronics, 11(21):3561.
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).
SegNet: A Deep Convolutional Encoder-Decoder Ar-
chitecture for Image Segmentation. IEEE Trans. Pat-
tern Anal. Mach. Intell., 39(12):2481–2495.
Beheshti, N. and Johnsson, L. (2020). Squeeze U-Net:
A Memory and Energy Efficient Image Segmentation
Network. In 2020 IEEE CVPR Workshops, pages
1495–1504.
Duquene, A. P. (2023). Apprentissage machine pour la
d
´
ecision de conduite autonome de v
´
ehicules guid
´
es :
Application dans le domaine ferroviaire. PhD thesis,
Universit
´
e Polytechnique Hauts-de-France.
Evchenko, M., Vanschoren, J., Hoos, H. H., Schoenauer,
M., and Sebag, M. (2021). Frugal Machine Learning.
arXiv:2111.03731.
Harb, J., R
´
eb
´
ena, N., Chosidow, R., Roblin, G., Potarusov,
R., and Hajri, H. (2020). FRSign: A Large-
Scale Traffic Light Dataset for Autonomous Trains.
arXiv:2002.05665.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Resid-
ual Learning for Image Recognition. In 2016 IEEE
CVPR, pages 770–778.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2017). Densely Connected Convolutional Net-
works. In 2017 IEEE CVPR, pages 2261–2269.
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. (2016). SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters
and ≤ 0.5mb model size. arXiv:1602.07360.
Li, X. and Peng, X. (2023). Rail Detection: An Efficient
Row-based Network and A New Benchmark. ACMM
2022 arXiv:2304.05667.
Nanfack, G., Elhassouny, A., and Thami, R. O. H. (2017).
Squeeze-SegNet: A new fast Deep Convolutional
Neural Network for Semantic Segmentation. ICMV
2017.
Pappaterra, M. J., Flammini, F., Vittorini, V., and Be
ˇ
sinovi
´
c,
N. (2021). A Systematic Review of Artificial Intelli-
gence Public Datasets for Railway Applications. In-
frastructures, 6(10):136.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. MICCAI 2015 arXiv:1505.04597.
Singh, P., Dulebenets, M. A., Pasha, J., Gonzalez, E. D.
R. S., Lau, Y.-Y., and Kampmann, R. (2021). Deploy-
ment of Autonomous Trains in Rail Transportation:
Current Trends and Existing Challenges. IEEE Ac-
cess, 9:91427–91461.
Skibicki, J. D. and Licow, R. (2022). A Visual Method
of Measuring Railway-Track Weed Infestation Level.
Metrology, 2(2):230–240.
Tan, M. and Le, Q. V. (2019). EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.
ICML 2019, pages 6105–6114.
Wang, Y., Wang, L., Hu, Y. H., and Qiu, J. (2019). Rail-
Net: A Segmentation Network for Railroad Detection.
IEEE Access, 7:143772–143779.
Yin, M., Li, K., and Cheng, X. (2020). A review on artificial
intelligence in high-speed rail. Transportation Safety
and Environment, 2(4):247–259.
Yvinec, E. (2023). Efficient Neural Networks : Post Train-
ing Pruning and Quantization. PhD thesis, Sorbonne
Universit
´
e.
Zakaria, B., Ben Ahmed, O., Amamra, A., Bradai, A.,
and Beghdad Bey, K. (2022). PSCS-Net: Perception
Optimized Image Reconstruction Network for Au-
tonomous Driving Systems. IEEE ITS, 24(2):1–16.
Zendel, O., Murschitz, M., Zeilinger, M., Steininger, D.,
Abbasi, S., and Beleznai, C. (2019). RailSem19: A
Dataset for Semantic Rail Scene Understanding. In
2019 IEEE CVPR Workshops, pages 1221–1229.
Zouaoui, A., Mahtani, A., Hadded, M. A., Ambellouis, S.,
Boonaert, J., and Wannous, H. (2022). RailSet: A
Unique Dataset for Railway Anomaly Detection. In
2022 IEEE IPAS, pages 1–6.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
354