
REFERENCES
Aggarwal, D. and Regev, O. (2016). A note on discrete
Gaussian combinations of lattice vectors. Chicago
Journal of Theoretical Computer Science, (7).
Agrawal, S., Boneh, D., and Boyen, X. (2010). Efficient
lattice (H)IBE in the standard model. In Gilbert, H.,
editor, EUROCRYPT 2010, pages 553–572. Springer.
Agrawal, S., Freeman, D. M., and Vaikuntanathan, V.
(2011). Functional encryption for inner product pred-
icates from learning with errors. In Lee, D. H. and
Wang, X., editors, ASIACRYPT 2011, pages 21–40.
Springer.
Agrawal, S., Gentry, C., Halevi, S., and Sahai, A. (2013).
Discrete Gaussian leftover hash lemma over infinite
domains. In Sako, K. and Sarkar, P., editors, ASI-
ACRYPT 2013, pages 97–116. Springer.
Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T.,
Kelsey, J., Lichtinger, J., Miller, C., Moody, D., Per-
alta, R., Perlner, R., Robinson, A., and Smith-Tone,
D. (2022). NIST IR 8413-upd1: Status report on the
third round of the NIST post-quantum cryptography
standardization process.
Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck, J. M., Schwabe, P., Seiler, G., and Stehl
´
e, D.
(2018). CRYSTALS-Kyber: A CCA-secure module-
lattice-based KEM. In Euro S&P 2018, pages 353–
367.
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2011).
Fully homomorphic encryption without bootstrap-
ping. ePrint 2011/277. https://eprint.iacr.org/2011
/277.
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., and
Stehl
´
e, D. (2013). Classical hardness of learning with
errors. In STOC ’13, page 575–584. ACM.
Ducas, L., Galbraith, S., Prest, T., and Yu, Y. (2020). Inte-
gral matrix Gram root and lattice Gaussian sampling
without floats. In Canteaut, A. and Ishai, Y., editors,
EUROCRYPT 2020, pages 608–637. Springer.
Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,
Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte,
W., and Zhang, Z. (2020). Falcon: Fast-fourier lattice-
based compact signatures over NTRU – specifications
v1.2. 2020. Technical Report, NIST.
Genise, N. and Micciancio, D. (2018). Faster Gaussian sam-
pling for trapdoor lattices with arbitrary modulus. In
Nielsen, J. B. and Rijmen, V., editors, EUROCRYPT
2018, pages 174–203. Springer.
Genise, N., Micciancio, D., Peikert, C., and Walter, M.
(2020). Improved discrete Gaussian and subGaus-
sian analysis for lattice cryptography. In Kiayias, A.,
Kohlweiss, M., Wallden, P., and Zikas, V., editors,
PKC 2020, pages 623–651. Springer.
Gentry, C., Peikert, C., and Vaikuntanathan, V. (2008).
Trapdoors for hard lattices and new cryptographic
constructions. In STOC ’08, page 197–206. ACM.
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computa-
tions (3rd Ed.). Johns Hopkins University Press.
Hoffstein, J., Pipher, J., and Silverman, J. H. (1998). NTRU:
A ring-based public key cryptosystem. In Buhler, J. P.,
editor, ANTS 1998, pages 267–288. Springer.
Kiltz, E., Lyubashevsky, V., and Schaffner, C. (2018). A
concrete treatment of Fiat-Shamir signatures in the
quantum random-oracle model. In Nielsen, J. B. and
Rijmen, V., editors, EUROCRYPT 2018, pages 552–
586. Springer.
Langlois, A. and Stehl
´
e, D. (2015). Worst-case to average-
case reductions for module lattices. Des. Codes Cryp-
togr., 75(3):565–599.
Lyubashevsky, V., Peikert, C., and Regev, O. (2010). On
ideal lattices and learning with errors over rings. In
Gilbert, H., editor, EUROCRYPT 2010, pages 1–23.
Springer.
Micciancio, D. and Peikert, C. (2012). Trapdoors for lat-
tices: Simpler, tighter, faster, smaller. In Pointcheval,
D. and Johansson, T., editors, EUROCRYPT 2012,
pages 700–718. Springer.
Micciancio, D. and Regev, O. (2007). Worst-case to
average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302.
Micciancio, D. and Walter, M. (2017). Gaussian sampling
over the integers: Efficient, generic, constant-time. In
Katz, J. and Shacham, H., editors, CRYPTO 2017,
pages 455–485. Springer.
Nguyen, H. H. and Vu, V. H. (2016). Normal vector of a
random hyperplane. International Mathematics Re-
search Notices, 2018(6):1754–1778.
Okada, H., Fukushima, K., Kiyomoto, S., and Takagi, T.
(2023). Spherical gaussian leftover hash lemma via
the R
´
enyi divergence. In Tibouchi, M. and Wang, X.,
editors, ACNS 2023, pages 695–724. Springer Nature
Singapore.
Peikert, C. (2009). Public-key cryptosystems from the
worst-case shortest vector problem: Extended ab-
stract. In STOC ’09, page 333–342. ACM.
Peikert, C. (2010). An efficient and parallel Gaussian sam-
pler for lattices. In Rabin, T., editor, CRYPTO 2010,
pages 80–97. Springer.
Rabin, M. O. and Shallit, J. O. (1986). Randomized algo-
rithms in number theory. Communications on Pure
and Applied Mathematics, 39(S1):S239–S256.
Regev, O. (2005). On lattices, learning with errors, random
linear codes, and cryptography. In STOC ’05, pages
84–93. ACM.
Stehl
´
e, D., Steinfeld, R., Tanaka, K., and Xagawa, K.
(2009). Efficient public key encryption based on ideal
lattices. In Matsui, M., editor, ASIACRYPT 2009,
pages 617–635. Springer.
Tao, T. (2012). Topics in random matrix theory. Graduate
Studies in Mathematics, 132.
Gram Root Decomposition over the Polynomial Ring: Application to Sphericalization of Discrete Gaussian
317