
REFERENCES
Attiya, I., Abd Elaziz, M., Abualigah, L., Nguyen, T. N.,
and Abd El-Latif, A. A. (2022). An improved hybrid
swarm intelligence for scheduling iot application tasks
in the cloud. IEEE Transactions on Industrial Infor-
matics, 18(9):6264–6272.
Bai, X., Liu, D., and Xu, X. (2024). A review of improved
methods for ant colony optimization in path planning.
Journal of Ship Research, pages 1–16.
Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012).
Fog computing and its role in the internet of things. In
Proceedings of the 1st Edition of the MCC workshop
on Mobile Cloud Computing, pages 13–16.
Chandrashekar, C., Krishnadoss, P., Kedalu Poornachary,
V., Ananthakrishnan, B., and Rangasamy, K. (2023).
Hwacoa scheduler: Hybrid weighted ant colony opti-
mization algorithm for task scheduling in cloud com-
puting. Applied Sciences, 13(6):3433.
Chen, Y., Zhao, J., Hu, J., Wan, S., and Huang, J. Dis-
tributed task offloading and resource purchasing in
noma-enabled mobile edge computing: Hierarchical
game theoretical approaches. ACM Transactions on
Embedded Computing Systems, 23(1):1–28.
Corominas, G. R., Blesa, M. J., and Blum, C. (2023).
Antnetalign: Ant colony optimization for network
alignment. Applied Soft Computing, 132:109832.
Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony
optimization. IEEE Computational Intelligence Mag-
azine, 1(4):28–39.
Dorigo, M. and St
¨
utzle, T. (2003). The ant colony opti-
mization metaheuristic: Algorithms, applications, and
advances. Handbook of Metaheuristics, pages 250–
285.
Du, X., Du, C., Chen, J., and Liu, Y. (2023). An energy-
aware resource allocation method for avionics systems
based on improved ant colony optimization algorithm.
Computers and Electrical Engineering, 105:108515.
Ghasemi, A. and Schranz, M. (2024). Bottom-up re-
source orchestration in edge computing: An agent-
based modeling approach. In 12th IEEE International
Conference on Intelligent Systems, pages 1–7.
Gkonis, P., Giannopoulos, A., Trakadas, P., Masip-Bruin,
X., and D’Andria, F. (2023). A survey on iot-edge-
cloud continuum systems: status, challenges, use
cases, and open issues. Future Internet, 15(12):383.
Godsil, C. and Royle, G. F. (2013). Algebraic graph theory,
volume 207. Springer Science & Business Media.
Hasan, M. K., Jahan, N., Nazri, M. Z. A., Islam, S., Khan,
M. A., Alzahrani, A. I., Alalwan, N., and Nam, Y.
(2024). Federated learning for computational offload-
ing and resource management of vehicular edge com-
puting in 6g-v2x network. IEEE Transactions on Con-
sumer Electronics, 70(1):3827–3847.
Jiao, L., Friedman, R., Fu, X., Secci, S., Smoreda, Z., and
Tschofenig, H. (2013). Cloud-based computation of-
floading for mobile devices: State of the art, chal-
lenges and opportunities. 2013 Future Network & Mo-
bile Summit, pages 1–11.
Kim, E., Lee, K., and Yoo, C. (2021). On the resource man-
agement of kubernetes. In 2021 International Confer-
ence on Information Networking, pages 154–158.
Masad, D., Kazil, J. L., et al. (2015). Mesa: An agent-based
modeling framework. In SciPy, pages 51–58. Citeseer.
Palumbo, F., Zedda, M. K., Fanni, T., Bagnato, A., Castello,
L., Castrillon, J., Ponte, R. D., Deng, Y., Driessen, B.,
Fadda, M., et al. (2024). Myrtus: Multi-layer 360 dy-
namic orchestration and interoperable design environ-
ment for compute-continuum systems. In Proceedings
of the 21st ACM International Conference on Comput-
ing Frontiers: Workshops and Special Sessions, pages
101–106.
Parikh, S., Dave, D., Patel, R., and Doshi, N. (2019). Secu-
rity and privacy issues in cloud, fog and edge comput-
ing. Procedia Computer Science, 160:734–739.
Pereira, P., Melo, C., Araujo, J., Dantas, J., Santos, V., and
Maciel, P. (2022). Availability model for edge-fog-
cloud continuum: an evaluation of an end-to-end in-
frastructure of intelligent traffic management service.
The Journal of Supercomputing, pages 1–28.
Platt, E. L. (2019). Network science with Python and Net-
workX quick start guide: explore and visualize net-
work data effectively. Packt Publishing Ltd.
Rajesh, G., Mercilin Raajini, X., Ashoka Rajan, R.,
Gokuldhev, M., and Swetha, C. (2020). A multi-
objective routing optimization using swarm intelli-
gence in iot networks. In In Proceedings of the In-
telligent Computing and Innovation on Data Science
Conference, pages 603–613. Springer.
Robles-Enciso, A. and Skarmeta, A. F. (2024). Adapting
containerized workloads for the continuum comput-
ing. IEEE Access, 12:104102–104114.
Saba, T., Rehman, A., Haseeb, K., Alam, T., and Jeon, G.
(2023). Cloud-edge load balancing distributed proto-
col for ioe services using swarm intelligence. Cluster
Computing, 26(5):2921–2931.
Satyanarayanan, M. (2017). The emergence of edge com-
puting. Computer, 50(1):30–39.
Schranz, M., Di Caro, G. A., Schmickl, T., Elmenreich,
W., Arvin, F., S¸ekercio
˘
glu, A., and Sende, M. (2021).
Swarm intelligence and cyber-physical systems: con-
cepts, challenges and future trends. Swarm and Evo-
lutionary Computation, 60:100762.
Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646.
Simi
´
c, M., Proki
´
c, I., Dedei
´
c, J., Sladi
´
c, G., and Milosavl-
jevi
´
c, B. (2021). Towards edge computing as a ser-
vice: Dynamic formation of the micro data-centers.
IEEE Access, 9:114468–114484.
Tong, Z., Deng, X., Ye, F., Basodi, S., Xiao, X., and Pan,
Y. (2020). Adaptive computation offloading and re-
source allocation strategy in a mobile edge computing
environment. Information Sciences, 537:116–131.
Wu, L., Huang, X., Cui, J., Liu, C., and Xiao, W. (2023).
Modified adaptive ant colony optimization algorithm
and its application for solving path planning of mobile
robot. Expert Systems with Applications, 215:119410.
Swarm Intelligence-Based Algorithm for Workload Placement in Edge-Fog-Cloud Continuum
317