
Hashmi, S. S., Dam, H. K., Smet, P., and Baruwal Chhetri,
M. (2022). Towards Antifragility in Contested En-
vironments: Using Adversarial Search to Learn, Pre-
dict, and Counter Open-Ended Threats. In Procs. of
the IEEE Int. Conference on Autonomic Computing
and Self-Organizing Systems (ACSOS), pages 141–
146. IEEE.
Hashmi, S. S., Dam, H. K., Uzunov, A. V., Baruwal Chhetri,
M., Ghose, A., and Colman, A. (2023). Goal-Driven
Adversarial Search for Distributed Self-Adaptive Sys-
tems. In Procs. of IEEE Int. Conference on Software
Services Engr. (SSE), pages 198–209. IEEE.
Hintjens, P. et al. (2013). Advanced Request-Reply Pat-
terns. In ZeroMQ: messaging for many applications,
chapter 3. O’Reilly Media, Inc.
Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Mat
´
e, A.,
Paja, E., Salnitri, M., Piras, L., Mylopoulos, J., and
Giorgini, P. (2019). Goal-oriented requirements engi-
neering: an extended systematic mapping study. Re-
quirements Engr., 24:133–160.
IC3 (2023). FBI Internet Crime Report 2023.
https://www.ic3.gov/Media/PDF/AnnualReport/
2023 IC3Report.pdf.
Ismail, Z. H., Sariff, N., and Hurtado, E. (2018). A sur-
vey and analysis of cooperative multi-agent robot sys-
tems: challenges and directions. Applications of Mo-
bile Robots, 5:8–14.
Kocsis, L. and Szepesv
´
ari, C. (2006). Bandit based Monte-
Carlo planning. In European Conference on Machine
Learning, pages 282–293. Springer.
Kurzer, K., Zhou, C., and Z
¨
ollner, J. M. (2018). Decentral-
ized cooperative planning for automated vehicles with
hierarchical Monte Carlo Tree Search. In 2018 IEEE
Intelligent Vehicles Symp. (IV), pages 529–536. IEEE.
Letier, E., Kramer, J., Magee, J., and Uchitel, S. (2008).
Deriving event-based transition systems from goal-
oriented requirements models. Automated Software
Engr., 15:175–206.
Liaskos, S., McIlraith, S. A., Sohrabi, S., and Mylopoulos,
J. (2010). Integrating preferences into goal models for
requirements engr. In 2010 18th IEEE Int. Require-
ments Engr. Conference, pages 135–144. IEEE.
Linkov, I. and Kott, A. (2019). Fundamental concepts of
cyber resilience: Introduction and overview. Cyber
Resilience of Systems and Networks, pages 1–25.
Morandini, M., Penserini, L., Perini, A., and Marchetto, A.
(2017). Engineering requirements for adaptive sys-
tems. Requirements Engr., 22(1):77–103.
Panagou, D., Stipanovi
´
c, D. M., and Voulgaris, P. G. (2015).
Distributed coordination control for multi-robot net-
works using Lyapunov-like barrier functions. IEEE
Transactions on Automatic Control, 61(3):617–632.
Ponniah, J. and Dantsker, O. D. (2022). Strategies for
scaleable communication and coordination in multi-
agent (uav) systems. Aerospace, 9(9):488.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
et al. (2016). Mastering the game of Go with deep neu-
ral networks and tree search. Nature, 529(7587):484–
489.
´
Swiechowski, M., Godlewski, K., Sawicki, B., and
Ma
´
ndziuk, J. (2022). Monte Carlo Tree Search: A
review of recent modifications and applications. Arti-
ficial Intelligence Review, pages 1–66.
Tang, A. Y. and Basheer, G. S. (2017). A conflict resolution
strategy selection method (ConfRSSM) in multi-agent
systems. Int. Journal of Advanced Computer Science
and Applications, 8(5).
Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., et al.
(2004). A multi-agent systems approach to autonomic
computing. In Procs. of the Third Int. Joint Confer-
ence on Autonomous Agents and Multiagent Systems,
volume 1, pages 464–471.
Tessier, C., Chaudron, L., and M
¨
uller, H.-J. (2005). Con-
flicting agents: conflict management in multi-agent
systems, volume 1. Springer Science & Business Me-
dia.
Thangarajah, J. and Padgham, L. (2011). Computationally
effective reasoning about goal interactions. Journal of
Automated Reasoning, 47:17–56.
Uzunov, A. V., Baruwal Chhetri, M., and Wondoh, J.
(2021). GOURMET: A methodology for realiz-
ing goal-driven self-adaptation. In Procs. of 2021
ACM/IEEE Int. Conference on Model Driven Engr.
Languages and Systems Companion (MODELS-C),
pages 197–202. IEEE.
Uzunov, A. V., Vo, Q. B., Dam, H. K., Harold, C.,
Baruwal Chhetri, M., Colman, A., and Hashmi, S. S.
(2023). Adaptivity and Antifragility. In Kott, A.,
editor, Autonomous Intelligent Cyber Defense Agent
(AICA): A Comprehensive Guide, volume 87 of Ad-
vances in Information Security, chapter 10. Springer
Nature.
Van Lamsweerde, A. (2001). Goal-oriented requirements
engineering: A guided tour. In Procs. 5th IEEE Int.
Symp. on Requirements Engr., pages 249–262. IEEE.
Van Lamsweerde, A. (2009). Requirements Engineering:
From system goals to UML models to software, vol-
ume 10. Chichester, UK: John Wiley & Sons.
Verma, J. K. and Ranga, V. (2021). Multi-robot coordina-
tion analysis, taxonomy, challenges and future scope.
Journal of intelligent & robotic systems, 102:1–36, ar-
ticle 10.
Wang, X., Cao, J., and Wang, J. (2012). A runtime goal
conflict resolution model for agent systems. In 2012
IEEE/WIC/ACM Int. Conference on Web Intelligence
and Intelligent Agent Technology, volume 2, pages
340–347. IEEE.
Weyns, D. and Georgeff, M. (2009). Self-adaptation using
multiagent systems. IEEE software, 27(1):86–91.
Yu, E. (1997). Towards modelling and reasoning support
for early-phase requirements engineering. In Procs. of
ISRE’97: 3rd IEEE Int. Symp. on Requirements Engr.,
pages 226–235. IEEE.
Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., and
Leite, J. C. (2008). From goals to high-variability soft-
ware design. In Foundations of Intelligent Systems:
17th Int. Symposium, ISMIS 2008 Toronto, Canada,
May 20-23, 2008 Procs. 17, pages 1–16. Springer.
Zatelli, M. R., H
¨
ubner, J. F., Ricci, A., and Bordini, R. H.
(2016). Conflicting goals in agent-oriented program-
ming. In Procs. of the 6th Int. Workshop on Pro-
gramming Based on Actors, Agents, and Decentral-
ized Control, pages 21–30.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
332