
national Conference on Data Engineering Workshops
(ICDEW), pages 88–93. IEEE.
Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis,
J. (2009). Modeling wine preferences by data mining
from physicochemical properties. Decision Support
Systems, 47(4):547 – 553.
Cummings, R., Desfontaines, D., Evans, D., Geambasu,
R., Huang, Y., Jagielski, M., Kairouz, P., Ka-
math, G., Oh, S., Ohrimenko, O., Papernot, N.,
Rogers, R., Shen, M., Song, S., Su, W., Terzis, A.,
Thakurta, A., Vassilvitskii, S., Wang, Y.-X., Xiong,
L., Yekhanin, S., Yu, D., Zhang, H., and Zhang,
W. (2024). Advancing Differential Privacy: Where
We Are Now and Future Directions for Real-World
Deployment. Harvard Data Science Review, 6(1).
https://hdsr.mitpress.mit.edu/pub/sl9we8gh.
Dwork, C. (2006). Differential Privacy, pages 1–12.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Dwork, C. (2008). Differential Privacy: A Survey of Re-
sults, pages 1–19. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. (2006). Our data, ourselves: Privacy via
distributed noise generation. In Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 486–503. Springer.
Dwork, C., Naor, M., Reingold, O., Rothblum, G. N., and
Vadhan, S. (2009). On the complexity of differentially
private data release: efficient algorithms and hardness
results. In Proceedings of the Forty-First Annual ACM
Symposium on Theory of Computing, STOC ’09, page
381–390, New York, NY, USA. Association for Com-
puting Machinery.
Friedman, A. and Schuster, A. (2010). Data mining
with differential privacy. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’10, pages
493–502, New York, NY, USA. ACM.
Ghazi, B., Hu, X., Kumar, R., and Manurangsi, P. (2023).
Differentially private data release over multiple tables.
In Proceedings of the 42nd ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems,
PODS ’23, page 207–219, New York, NY, USA. As-
sociation for Computing Machinery.
Golle, P. (2006). Revisiting the uniqueness of simple de-
mographics in the us population. In Proceedings of
the 5th ACM Workshop on Privacy in Electronic So-
ciety, WPES ’06, pages 77–80, New York, NY, USA.
ACM.
J. Domingo-Ferrer, D. S
´
anchez, A. B.-J. (2021). The limits
of differential privacy (and its misuse in data release
and machine learning). Communications of the ACM,
64(7):33–35.
Joyce, M. S. and Nirmalrani, V. (2015). Privacy in horizon-
tally distributed databases based on association rules.
In 2015 International Conference on Circuits, Power
and Computing Technologies [ICCPCT-2015], pages
1–6.
Mironov, I. (2017). R
´
enyi differential privacy. In 2017
IEEE 30th Computer Security Foundations Sympo-
sium (CSF), pages 263–275.
Mohammed, N., Alhadidi, D., Fung, B. C., and Debbabi,
M. (2014). Secure two-party differentially private
data release for vertically partitioned data. IEEE
Transactions on Dependable and Secure Computing,
11(1):59–71.
Samarati, P. and Sweeney, L. (1998). Protecting privacy
when disclosing information: k-anonymity and its en-
forcement through generalization and suppression.
S
´
anchez, D., Domingo-Ferrer, J., Mart
´
ınez, S., and Soria-
Comas, J. (2016). Utility-preserving differentially pri-
vate data releases via individual ranking microaggre-
gation. Information Fusion, 30:1 – 14.
Sauer, B. and Hao, W. (2015). Horizontal cloud database
partitioning with data mining techniques. In 2015
12th Annual IEEE Consumer Communications and
Networking Conference (CCNC), pages 796–801.
Soria-Comas, J., Domingo-Ferrer, J., S
´
anchez, D., and
Meg
´
ıas, D. (2017). Individual differential privacy: A
utility-preserving formulation of differential privacy
guarantees. IEEE Transactions on Information Foren-
sics and Security, 12(6):1418–1429.
Sweeney, L. (2000). Simple demographics often iden-
tify people uniquely. Health (San Francisco),
671(2000):1–34.
Tang, P., Cheng, X., Su, S., Chen, R., and Shao, H. (2021).
Differentially private publication of vertically parti-
tioned data. IEEE Transactions on Dependable and
Secure Computing, 18(2):780–795.
Vaidya, J. (2008). A Survey of Privacy-Preserving Meth-
ods Across Vertically Partitioned Data, pages 337–
358. Springer US, Boston, MA.
Wang, H. and Xu, Z. (2017). Cts-dp: Publishing correlated
time-series data via differential privacy. Knowledge-
Based Systems, 122:167 – 179.
Wang, R., Fung, B. C., Zhu, Y., and Peng, Q. (2021). Dif-
ferentially private data publishing for arbitrarily parti-
tioned data. Information Sciences, 553:247–265.
Yang, M., Guo, T., Zhu, T., Tjuawinata, I., Zhao, J., and
Lam, K. (2024). Local differential privacy and its ap-
plications: A comprehensive survey. Computer Stan-
dards & Interfaces, 89:103827.
Privacy- & Utility-Preserving Data Releases over Fragmented Data Using Individual Differential Privacy
329