
D
´
ıaz, M., Novo, J., Cutr
´
ın, P., G
´
omez-Ulla, F., Penedo,
M. G., and Ortega, M. (2019). Automatic segmenta-
tion of the foveal avascular zone in ophthalmological
oct-a images. PloS one, 14(2):e0212364.
Diogo, V. S., Ferreira, H. A., Prata, D., and Initiative, A.
D. N. (2022). Early diagnosis of alzheimer’s disease
using machine learning: a multi-diagnostic, general-
izable approach. Alzheimer’s Research & Therapy,
14(1):107.
Ferrari, L., Huang, S.-C., Magnani, G., Ambrosi, A., Comi,
G., and Leocani, L. (2017). Optical coherence tomog-
raphy reveals retinal neuroaxonal thinning in fron-
totemporal dementia as in alzheimer’s disease. Jour-
nal of Alzheimer’s Disease, 56(3):1101–1107.
Hassen, S. B., Neji, M., Hussain, Z., Hussain, A., Alimi,
A. M., and Frikha, M. (2024). Deep learning meth-
ods for early detection of alzheimer’s disease using
structural mr images: A survey. Neurocomputing,
576:127325.
Katsimpris, A., Karamaounas, A., Sideri, A. M., Katsim-
pris, J., Georgalas, I., and Petrou, P. (2022). Opti-
cal coherence tomography angiography in alzheimer’s
disease: A systematic review and meta-analysis. Eye,
36(7):1419–1426.
Koronyo, Y., Biggs, D., Barron, E., Boyer, D. S., Pearlman,
J. A., Au, W. J., Kile, S. J., Blanco, A., Fuchs, D.-T.,
Ashfaq, A., et al. (2017). Retinal amyloid pathology
and proof-of-concept imaging trial in alzheimer’s dis-
ease. JCI insight, 2(16).
Krittanawong, C., Virk, H. U. H., Bangalore, S., Wang,
Z., Johnson, K. W., Pinotti, R., Zhang, H., Kaplin,
S., Narasimhan, B., Kitai, T., et al. (2020). Machine
learning prediction in cardiovascular diseases: a meta-
analysis. Scientific reports, 10(1):16057.
Lauermann, J., Treder, M., Alnawaiseh, M., Clemens, C.,
Eter, N., and Alten, F. (2019). Automated oct angiog-
raphy image quality assessment using a deep learning
algorithm. Graefe’s Archive for Clinical and Experi-
mental Ophthalmology, 257:1641–1648.
Le, D., Son, T., Kim, T.-H., Adejumo, T., Abtahi, M.,
Ahmed, S., Rossi, A., Ebrahimi, B., Dadzie, A., Ma,
G., et al. (2024). Deep learning-based optical coher-
ence tomography angiography image construction us-
ing spatial vascular connectivity network. Communi-
cations Engineering, 3(1):28.
Lemmens, S., Devulder, A., Van Keer, K., Bierkens, J.,
De Boever, P., and Stalmans, I. (2020). Systematic
review on fractal dimension of the retinal vasculature
in neurodegeneration and stroke: assessment of a po-
tential biomarker. Frontiers in neuroscience, 14:16.
Li, M., Chen, Y., Ji, Z., Xie, K., Yuan, S., Chen, Q., and Li,
S. (2020). Image projection network: 3d to 2d image
segmentation in octa images. IEEE Transactions on
Medical Imaging, 39(11):3343–3354.
Li, M., Huang, K., Xu, Q., Yang, J., Zhang, Y., Ji, Z., Xie,
K., Yuan, S., Liu, Q., and Chen, Q. (2024). Octa-500:
a retinal dataset for optical coherence tomography an-
giography study. Medical image analysis, 93:103092.
Li, Y., El Habib Daho, M., Conze, P.-H., Zeghlache, R.,
Le Boit
´
e, H., Bonnin, S., Cosette, D., Magazzeni, S.,
Lay, B., Le Guilcher, A., et al. (2023). Hybrid fusion
of high-resolution and ultra-widefield octa acquisi-
tions for the automatic diagnosis of diabetic retinopa-
thy. Diagnostics, 13(17):2770.
Liu, X., Bi, L., Xu, Y., Feng, D., Kim, J., and Xu, X.
(2019). Robust deep learning method for choroidal
vessel segmentation on swept source optical coher-
ence tomography images. Biomedical Optics Express,
10(4):1601–1612.
Liu, X., Zhu, H., Zhang, H., and Xia, S. (2024). The frame-
work of quantifying biomarkers of oct and octa im-
ages in retinal diseases. Sensors, 24(16):5227.
Naseripour, M., Ghasemi Falavarjani, K., Mirshahi, R., and
Sedaghat, A. (2020). Optical coherence tomography
angiography (octa) applications in ocular oncology.
Eye, 34(9):1535–1545.
Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K.,
Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A.,
Abu-Gharbieh, E., Akram, T. T., et al. (2022). Esti-
mation of the global prevalence of dementia in 2019
and forecasted prevalence in 2050: an analysis for the
global burden of disease study 2019. The Lancet Pub-
lic Health, 7(2):e105–e125.
O’Bryhim, B. E., Apte, R. S., Kung, N., Coble, D., and
Van Stavern, G. P. (2018). Association of preclin-
ical alzheimer disease with optical coherence tomo-
graphic angiography findings. JAMA ophthalmology,
136(11):1242–1248.
Peng, Y., Keenan, T. D., Chen, Q., Agr
´
on, E., Allot, A.,
Wong, W. T., Chew, E. Y., and Lu, Z. (2020). Predict-
ing risk of late age-related macular degeneration using
deep learning. NPJ digital medicine, 3(1):111.
Qian, B., Chen, H., Wang, X., Guan, Z., Li, T., Jin, Y., Wu,
Y., Wen, Y., Che, H., Kwon, G., et al. (2024). Drac
2022: A public benchmark for diabetic retinopathy
analysis on ultra-wide optical coherence tomography
angiography images. Patterns, 5(3).
Snyder, P. J., Johnson, L. N., Lim, Y. Y., Santos, C. Y.,
Alber, J., Maruff, P., and Fern
´
andez, B. (2016).
Nonvascular retinal imaging markers of preclinical
alzheimer’s disease. Alzheimer’s & Dementia: Diag-
nosis, Assessment & Disease Monitoring, 4:169–178.
Turkan, Y. and Tek, F. B. (2022). A survey on automated
diagnosis of alzheimer’s disease using optical coher-
ence tomography and angiography. arXiv preprint
arXiv:2209.03354.
Turkan, Y. and Tek, F. B. (2023). Automated diagnosis of
ad using oct and octa: A systematic review. Authorea
Preprints.
Xue, J., Feng, Z., Zeng, L., Wang, S., Zhou, X., Xia, J.,
and Deng, A. (2024). Soul: An octa dataset based on
human machine collaborative annotation framework.
Scientific Data, 11(1):838.
Yang, D., Ran, A. R., Nguyen, T. X., Lin, T. P., Chen, H.,
Lai, T. Y., Tham, C. C., and Cheung, C. Y. (2023).
Deep learning in optical coherence tomography an-
giography: Current progress, challenges, and future
directions. Diagnostics, 13(2):326.
Yoon, J. M., Lim, C. Y., Noh, H., Nam, S. W., Jun, S. Y.,
Kim, M. J., Song, M. Y., Jang, H., Kim, H. J., Seo,
S. W., et al. (2024). Enhancing foveal avascular zone
analysis for alzheimer’s diagnosis with ai segmenta-
tion and machine learning using multiple radiomic
features. Scientific Reports, 14(1):1841.
OCTA Image-Based Machine Learning Models for Discriminating Alzheimer’s Disease from Neurodegenerative and Ocular Conditions
331