
Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones,
E., Bereket, M., Patel, B. N., Yeom, K. W., Shpan-
skaya, K., et al. (2018). Deep-learning-assisted di-
agnosis for knee magnetic resonance imaging: devel-
opment and retrospective validation of mrnet. PLoS
medicine, 15(11):e1002699.
Brau, A. C., Beatty, P. J., Skare, S., and Bammer, R. (2008).
Comparison of reconstruction accuracy and efficiency
among autocalibrating data-driven parallel imaging
methods. Magnetic Resonance in Medicine: An Offi-
cial Journal of the International Society for Magnetic
Resonance in Medicine, 59(2):382–395.
Candes, E. J. (2008). The restricted isometry property and
its implications for compressed sensing. Comptes ren-
dus. Mathematique, 346(9-10):589–592.
Chen, H., Zhang, Y., Zhang, W., Liao, P., Li, K., Zhou, J.,
and Wang, G. (2017). Low-dose ct via convolutional
neural network. Biomedical optics express, 8(2):679–
694.
Feng, L., Benkert, T., Block, K. T., Sodickson, D. K., Otazo,
R., and Chandarana, H. (2017). Compressed sensing
for body mri. Journal of Magnetic Resonance Imag-
ing, 45(4):966–987.
Griswold, M. A., Blaimer, M., Breuer, F., Heidemann,
R. M., Mueller, M., and Jakob, P. M. (2005). Paral-
lel magnetic resonance imaging using the grappa op-
erator formalism. Magnetic resonance in medicine,
54(6):1553–1556.
Guan, S., Khan, A. A., Sikdar, S., and Chitnis, P. V. (2019).
Fully dense unet for 2-d sparse photoacoustic tomog-
raphy artifact removal. IEEE journal of biomedical
and health informatics, 24(2):568–576.
He, J., Liu, Q., Christodoulou, A. G., Ma, C., Lam,
F., and Liang, Z.-P. (2016a). Accelerated high-
dimensional mr imaging with sparse sampling using
low-rank tensors. IEEE transactions on medical imag-
ing, 35(9):2119–2129.
He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Iden-
tity mappings in deep residual networks. In Computer
Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11–14, 2016, Pro-
ceedings, Part IV 14, pages 630–645. Springer.
Hore, A. and Ziou, D. (2010). Image quality metrics: Psnr
vs. ssim. In 2010 20th international conference on
pattern recognition, pages 2366–2369. IEEE.
Jin, K. H., McCann, M. T., Froustey, E., and Unser, M.
(2017). Deep convolutional neural network for in-
verse problems in imaging. IEEE transactions on im-
age processing, 26(9):4509–4522.
Lustig, M., Donoho, D., and Pauly, J. M. (2007). Sparse
mri: The application of compressed sensing for rapid
mr imaging. Magnetic Resonance in Medicine: An
Official Journal of the International Society for Mag-
netic Resonance in Medicine, 58(6):1182–1195.
Lustig, M., Donoho, D. L., Santos, J. M., and Pauly, J. M.
(2008). Compressed sensing mri. IEEE signal pro-
cessing magazine, 25(2):72–82.
Mousavi, A. and Baraniuk, R. G. (2017). Learning to
invert: Signal recovery via deep convolutional net-
works. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP),
pages 2272–2276. IEEE.
Provost, J. and Lesage, F. (2008). The application of com-
pressed sensing for photo-acoustic tomography. IEEE
transactions on medical imaging, 28(4):585–594.
Ramzi, Z., Ciuciu, P., and Starck, J.-L. (2020). Benchmark-
ing mri reconstruction neural networks on large public
datasets. Applied Sciences, 10(5):1816.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer.
Sartoretti, E., Sartoretti, T., Binkert, C., Najafi, A.,
Schwenk,
´
A., Hinnen, M., van Smoorenburg, L.,
Eichenberger, B., and Sartoretti-Schefer, S. (2019).
Reduction of procedure times in routine clinical prac-
tice with compressed sense magnetic resonance imag-
ing technique. PloS one, 14(4):e0214887.
Wang, J., Zhang, C., and Wang, Y. (2017). A photoacoustic
imaging reconstruction method based on directional
total variation with adaptive directivity. Biomedical
engineering online, 16:1–30.
Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F.,
Feng, D., and Liang, D. (2016). Accelerating mag-
netic resonance imaging via deep learning. In 2016
IEEE 13th international symposium on biomedical
imaging (ISBI), pages 514–517. IEEE.
Wang, W., Liang, D., Chen, Q., Iwamoto, Y., Han, X.-
H., Zhang, Q., Hu, H., Lin, L., and Chen, Y.-W.
(2020). Medical image classification using deep learn-
ing. Deep learning in healthcare: paradigms and ap-
plications, pages 33–51.
Ying, L., Haldar, J., and Liang, Z.-P. (2006). An efficient
non-iterative reconstruction algorithm for parallel mri
with arbitrary k-space trajectories. In 2005 IEEE En-
gineering in Medicine and Biology 27th Annual Con-
ference, pages 1344–1347. IEEE.
Zhang, H.-M. and Dong, B. (2020). A review on deep learn-
ing in medical image reconstruction. Journal of the
Operations Research Society of China, 8(2):311–340.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
380