
ACKNOWLEDGEMENTS
This work is supported by the Knowledge Founda-
tion (Stiftelsen f
¨
or kunskaps- och kompetensutveck-
ling) for the project titled Intelligent and Trustworthy
IoT Systems under Grant No. 20220087-H-01.
REFERENCES
Alhawsawi, A. N., Khan, S. D., and Ur Rehman, F. (2024).
Crowd counting in diverse environments using a deep
routing mechanism informed by crowd density levels.
Information, 15(5):275.
Alishahi, N., Ouf, M. M., and Nik-Bakht, M. (2022). Us-
ing wifi connection counts and camera-based occu-
pancy counts to estimate and predict building occu-
pancy. Energy and Buildings, 257:111759.
Alsafery, W., Rana, O., and Perera, C. (2023). Sensing
within smart buildings: A survey. ACM Computing
Surveys, 55(13s):1–35.
Amayri, M., Arora, A., Ploix, S., Bandhyopadyay, S., Ngo,
Q.-D., and Badarla, V. R. (2016). Estimating occu-
pancy in heterogeneous sensor environment. Energy
and Buildings, 129:46–58.
Brazauskas, J., Jensen, C., Danish, M., Lewis, I., and
Mortier, R. (2024). Cerberus: Privacy-preserving
crowd counting and localisation using face detection
in edge devices. In Proceedings of the 7th Interna-
tional Workshop on Edge Systems, Analytics and Net-
working, pages 25–30.
Chaudhari, P., Xiao, Y., Cheng, M. M.-C., and Li, T. (2024).
Fundamentals, algorithms, and technologies of occu-
pancy detection for smart buildings using iot sensors.
Sensors, 24(7):2123.
Corporation, S. (2024). Nimway smart office by sony. Ac-
cessed: 2024-12-30.
Dobrilovic, D., Bogdan, R., Ognjenovic, V., and Marcu, M.
(2023). Analyses on usage of mlp regression with wsn
data for predicting room occupancy. In 2023 IEEE
19th International Conference on Intelligent Com-
puter Communication and Processing (ICCP), pages
131–136. IEEE.
Gao, M., Souri, A., Zaker, M., Zhai, W., Guo, X., and Li, Q.
(2024). A comprehensive analysis for crowd counting
methodologies and algorithms in internet of things.
Cluster Computing, 27(1):859–873.
Hitiyise, E., Ntagwirumugara, E., Habarurema, W.,
Ingabire, W., and Gasore, G. (2016). Building oc-
cupancy monitoring based on microcontroller and pir
sensors. Int. J. Appl. Eng. Res, 11:10414–10419.
Hobson, B. W., Lowcay, D., Gunay, H. B., Ashouri, A., and
Newsham, G. R. (2019). Opportunistic occupancy-
count estimation using sensor fusion: A case study.
Building and environment, 159:106154.
Jamali, M., Davidsson, P., Khoshkangini, R., Ljungqvist,
M. G., and Mihailescu, R.-C. (2024). Specialized in-
door and outdoor scene-specific object detection mod-
els. In Sixteenth International Conference on Machine
Vision (ICMV 2023), volume 13072, pages 201–210.
SPIE.
Jiang, C., Masood, M. K., Soh, Y. C., and Li, H. (2016). In-
door occupancy estimation from carbon dioxide con-
centration. Energy and Buildings, 131:132–141.
Kim, J., Bang, J., Choi, A., Moon, H. J., and Sung, M.
(2023). Estimation of occupancy using iot sensors and
a carbon dioxide-based machine learning model with
ventilation system and differential pressure data. Sen-
sors, 23(2):585.
Kumari, P., Reddy, S., and Yadav, R. (2024). Indoor occu-
pancy detection and counting system based on boost-
ing algorithm using different sensor data. Building
Research & Information, 52(1-2):87–106.
Li, T., Liu, X., Li, G., Wang, X., Ma, J., Xu, C., and Mao,
Q. (2024). A systematic review and comprehensive
analysis of building occupancy prediction. Renewable
and Sustainable Energy Reviews, 193:114284.
Liang, X., Shim, J., Anderton, O., and Song, D. (2024).
Low-cost data-driven estimation of indoor occupancy
based on carbon dioxide (co2) concentration: A multi-
scenario case study. Journal of Building Engineering,
82:108180.
Liu, Z., Guo, Z., Chen, Q., Song, C., Shang, W., Yuan, M.,
and Zhang, H. (2023). A review of data-driven smart
building-integrated photovoltaic systems: Challenges
and objectives. Energy, 263:126082.
Lu, C. (2024). Enhancing real-time nonintrusive occupancy
estimation in buildings via knowledge fusion network.
Energy and Buildings, 303:113812.
Mao, S., Yuan, Y., Li, Y., Wang, Z., Yao, Y., and Kang,
Y. (2023). Room occupancy prediction: Exploring
the power of machine learning and temporal insights.
arXiv preprint arXiv:2312.14426.
Masciadri, A., Lin, C., Comai, S., and Salice, F. (2022).
A multi-resident number estimation method for smart
homes. Sensors, 22(13):4823.
Naser, A., Lotfi, A., and Zhong, J. (2020). Adaptive ther-
mal sensor array placement for human segmentation
and occupancy estimation. IEEE Sensors Journal,
21(2):1993–2002.
Natarajan, K. S., Balu, S., and Mangottiri, V. (2023). Smart
and sustainable infrastructure for future energy and
environmental management. Environmental Science
and Pollution Research, 30(44):98993–98994.
Navarro, R. C., Ruiz, A. R., Molina, F. J. V., Romero, M.
J. S., Chaparro, J. D., Alises, D. V., and Lopez, J. C. L.
(2022). Indoor occupancy estimation for smart utili-
ties: A novel approach based on depth sensors. Build-
ing and Environment, 222:109406.
Ngamakeur, K., Yongchareon, S., Yu, J., and Islam, S.
(2023). Passive infrared sensor dataset and deep
learning models for device-free indoor localization
and tracking. Pervasive and Mobile Computing,
88:101721.
Rajabi, H., Ding, X., Du, W., and Cerpa, A. (2023). To-
dos: Thermal sensor data-driven occupancy estima-
tion system for smart buildings. In Proceedings of
the 10th ACM international conference on systems for
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
404