
fractures in high-resolution meshes; however, it has
certain limitations in its current form. To achieve real-
time performance, we prioritize computational effi-
ciency over accuracy in volume preservation. As a
result, the algorithm faces challenges in generating
and maintaining intricate crack patterns. A promising
future research direction is enhancing volume preser-
vation accuracy while maintaining real-time perfor-
mance. Implementing volume correction techniques
at each Galerkin grid level could be a potential ap-
proach to address this limitation.
REFERENCES
Areias, P. M. A. and Belytschko, T. (2005). Analysis
of three-dimensional crack initiation and propagation
using the extended finite element method. Interna-
tional Journal for Numerical Methods in Engineering,
63(5):760–788.
Arthur, D. and Vassilvitskii, S. (2007). K-means++: The
advantages of careful seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’07, page 1027–1035, USA.
Society for Industrial and Applied Mathematics.
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G.
(2007). A finite element method for animating large
viscoplastic flow. ACM Trans. Graph., 26(3):16–es.
Blender Foundation (2023). Blender 3.6.4 lts. https://www.
blender.org/ Last accessed on 2-10-2023.
Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M.
(2014). Projective dynamics: Fusing constraint pro-
jections for fast simulation. ACM Transactions on
Graphics, 33(4).
Brandt, C., Eisemann, E., and Hildebrandt, K. (2018).
Hyper-reduced projective dynamics. ACM Transac-
tions on Graphics, 37(4).
Chen, Z., Yao, M., Feng, R., and Wang, H. (2014). Physics-
inspired adaptive fracture refinement. ACM Trans.
Graph., 33(4).
Chentanez, N., M
¨
uller, M., and Macklin, M. (2016). Real-
time simulation of large elasto-plastic deformation
with shape matching. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Ani-
mation, SCA ’16, page 159–167, Goslar, DEU. Euro-
graphics Association.
Chitalu, F. M., Miao, Q., Subr, K., and Komura, T. (2020).
Displacement-correlated xfem for simulating brittle
fracture. Computer Graphics Forum, 39(2):569–583.
De Goes, F. and James, D. L. (2017). Regularized kelvin-
lets: Sculpting brushes based on fundamental solu-
tions of elasticity. ACM Trans. Graph., 36(4).
Fan, L., Chitalu, F. M., and Komura, T. (2022). Simulat-
ing brittle fracture with material points. ACM Trans.
Graph., 41(5).
Hahn, D. and Wojtan, C. (2015). High-resolution brittle
fracture simulation with boundary elements. ACM
Trans. Graph., 34(4).
Hahn, D. and Wojtan, C. (2016). Fast approximations for
boundary element based brittle fracture simulation.
ACM Trans. Graph., 35(4).
Hirota, K., Tanoue, Y., and Kaneko, T. (2000). Simulation
of three-dimensional cracks. The Visual Computer,
16:371 – 378.
Irving, G., Teran, J., and Fedkiw, R. (2004). Invert-
ible finite elements for robust simulation of large de-
formation. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, SCA ’04, pages 131–140, Goslar Germany,
Germany. Eurographics Association.
James, D. L. and Pai, D. K. (1999). Artdefo: Accurate
real time deformable objects. In Proceedings of the
26th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’99, page 65–72,
USA. ACM Press/Addison-Wesley Publishing Co.
Khodabakhshi, P., Reddy, J. N., and Srinivasa, A. (2016).
Grafea: a graph-based finite element approach for
the study of damage and fracture in brittle materials.
Meccanica, 51:3129 – 3147.
Kim, T., De Goes, F., and Iben, H. (2019). Anisotropic elas-
ticity for inversion-safety and element rehabilitation.
ACM Trans. Graph., 38(4).
Koschier, D., Bender, J., and Thuerey, N. (2017). Robust
extended finite elements for complex cutting of de-
formables. ACM Trans. Graph., 36(4).
Macklin, M. and M
¨
uller, M. (2013). Position based fluids.
ACM Transactions on Graphics, 32(4).
Mandal, A., Chaudhuri, P., and Chaudhuri, S. (2022a).
Interactive physics-based virtual sculpting with hap-
tic feedback. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 5(1).
Mandal, A., Chaudhuri, P., and Chaudhuri, S. (2022b).
Simulating fracture in anisotropic materials contain-
ing impurities. MIG ’22, New York, NY, USA. Asso-
ciation for Computing Machinery.
Mandal, A., Chaudhuri, P., and Chaudhuri, S. (2023).
Remeshing-free graph-based finite element method
for fracture simulation. Computer Graphics Forum,
42(1):117–134.
Molino, N., Bao, Z., and Fedkiw, R. (2004). A virtual node
algorithm for changing mesh topology during simula-
tion. In ACM SIGGRAPH 2004 Papers, SIGGRAPH
’04, page 385–392, New York, NY, USA. Association
for Computing Machinery.
M
¨
uller, M. (2008). Hierarchical position based dynamics.
In Workshop on Virtual Reality Interactions and Phys-
ical Simulations.
M
¨
uller, M. and Gross, M. (2004). Interactive virtual ma-
terials. In Proceedings of Graphics Interface 2004,
GI ’04, page 239–246, Waterloo, CAN. Canadian
Human-Computer Communications Society.
O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. (2002).
Graphical modeling and animation of ductile fracture.
ACM Trans. Graph., 21(3):291–294.
O’Brien, J. F. and Hodgins, J. K. (1999). Graphical model-
ing and animation of brittle fracture. In Proceedings
of the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’99, page
Galerkin Enhanced Graph-Based FEM for Interactive Fracture and Sculpting Applications
75