
negative reduction of minority classes in semantic seg-
mentation.
Chan, R., Uhlemeyer, S., Rottmann, M., and Gottschalk,
H. (2022). Detecting and learning the unknown in se-
mantic segmentation.
Chen, L., Zhu, Y., Papandreou, G., Schroff, F., and Adam,
H. (2018). Encoder-decoder with atrous separable
convolution for semantic image segmentation. CoRR,
abs/1802.02611.
Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Gird-
har, R. (2022). Masked-attention mask transformer for
universal image segmentation.
Cheng, B., Schwing, A. G., and Kirillov, A. (2021). Per-
pixel classification is not all you need for semantic
segmentation.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. CoRR, abs/1604.01685.
Deli
´
c, A., Grci
´
c, M., and Šegvi
´
c, S. (2024). Outlier detec-
tion by ensembling uncertainty with negative object-
ness.
Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan,
B., and Vernekar, S. (2018). Improving reconstruction
autoencoder out-of-distribution detection with maha-
lanobis distance. CoRR, abs/1812.02765.
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R.
(2004). Least angle regression. The Annals of Statis-
tics, 32(2).
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning.
Grci
´
c, M., Bevandi
´
c, P., and Šegvi
´
c, S. (2021). Dense
anomaly detection by robust learning on synthetic
negative data. ArXiv, abs/2112.12833.
Grci
´
c, M., Bevandi
´
c, P., and Šegvi
´
c, S. (2022). Dense-
hybrid: Hybrid anomaly detection for dense open-set
recognition.
Hendrycks, D. and Gimpel, K. (2017). A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.
Janai, J., Güney, F., Behl, A., and Geiger, A. (2020).
Computer vision for autonomous vehicles: Problems,
datasets and state of the art. Found. Trends. Comput.
Graph. Vis., 12(1–3):1–308.
Kendall, A., Badrinarayanan, V., and Cipolla, R. (2015).
Bayesian segnet: Model uncertainty in deep convolu-
tional encoder-decoder architectures for scene under-
standing. CoRR, abs/1511.02680.
Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles.
Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple uni-
fied framework for detecting out-of-distribution sam-
ples and adversarial attacks.
Li, Y. and Kosecka, J. (2021). Uncertainty aware proposal
segmentation for unknown object detection. CoRR,
abs/2111.12866.
Liang, S., Li, Y., and Srikant, R. (2018). Enhancing
the reliability of out-of-distribution image detection
in neural networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.
Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.
Lis, K., Nakka, K. K., Fua, P., and Salzmann, M.
(2019). Detecting the unexpected via image resyn-
thesis. CoRR, abs/1904.07595.
Nayal, N., Yavuz, M., Henriques, J. F., and Güney, F.
(2023). Rba: Segmenting unknown regions rejected
by all.
Oberdiek, P., Rottmann, M., and Fink, G. A. (2020). De-
tection and retrieval of out-of-distribution objects in
semantic segmentation. CoRR, abs/2005.06831.
Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C.,
and Mester, R. (2016). Lost and found: Detecting
small road hazards for self-driving vehicles. CoRR,
abs/1609.04653.
Rai, S. N., Cermelli, F., Fontanel, D., Masone, C., and Ca-
puto, B. (2023). Unmasking anomalies in road-scene
segmentation.
Rottmann, M., Colling, P., Hack, T., Hüger, F., Schlicht,
P., and Gottschalk, H. (2018). Prediction error meta
classification in semantic segmentation: Detection via
aggregated dispersion measures of softmax probabili-
ties. CoRR, abs/1811.00648.
Rottmann, M. and Schubert, M. (2019). Uncertainty mea-
sures and prediction quality rating for the semantic
segmentation of nested multi resolution street scene
images. CoRR, abs/1904.04516.
van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y.
(2020). Simple and scalable epistemic uncertainty es-
timation using a single deep deterministic neural net-
work. CoRR, abs/2003.02037.
Wong, K., Wang, S., Ren, M., Liang, M., and Urtasun,
R. (2019). Identifying unknown instances for au-
tonomous driving. CoRR, abs/1910.11296.
Wu, Z., Shen, C., and van den Hengel, A. (2016). Wider or
deeper: Revisiting the resnet model for visual recog-
nition. CoRR, abs/1611.10080.
Xia, Y., Zhang, Y., Liu, F., Shen, W., and Yuille, A. L.
(2020). Synthesize then compare: Detecting fail-
ures and anomalies for semantic segmentation. CoRR,
abs/2003.08440.
Zhu, Y., Sapra, K., Reda, F. A., Shih, K. J., Newsam, S. D.,
Tao, A., and Catanzaro, B. (2018). Improving seman-
tic segmentation via video propagation and label re-
laxation. CoRR, abs/1812.01593.
Neural Network Meta Classifier: Improving the Reliability of Anomaly Segmentation
355